• Title/Summary/Keyword: B-operator

Search Result 611, Processing Time 0.023 seconds

Range Kernel Orthogonality and Finite Operators

  • Mecheri, Salah;Abdelatif, Toualbia
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.1
    • /
    • pp.63-71
    • /
    • 2015
  • Let H be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on H into itself. Let $A,B{\in}\mathcal{L}(H)$ we define the generalized derivation ${\delta}_{A,B}:\mathcal{L}(H){\mapsto}\mathcal{L}(H)$ by ${\delta}_{A,B}(X)=AX-XB$, we note ${\delta}_{A,A}={\delta}_A$. If the inequality ${\parallel}T-(AX-XA){\parallel}{\geq}{\parallel}T{\parallel}$ holds for all $X{\in}\mathcal{L}(H)$ and for all $T{\in}ker{\delta}_A$, then we say that the range of ${\delta}_A$ is orthogonal to the kernel of ${\delta}_A$ in the sense of Birkhoff. The operator $A{\in}\mathcal{L}(H)$ is said to be finite [22] if ${\parallel}I-(AX-XA){\parallel}{\geq}1(*)$ for all $X{\in}\mathcal{L}(H)$, where I is the identity operator. The well-known inequality (*), due to J. P. Williams [22] is the starting point of the topic of commutator approximation (a topic which has its roots in quantum theory [23]). In [16], the author showed that a paranormal operator is finite. In this paper we present some new classes of finite operators containing the class of paranormal operators and we prove that the range of a generalized derivation is orthogonal to its kernel for a large class of operators containing the class of normal operators.

POSITIVE LINEAR OPERATORS IN C*-ALGEBRAS

  • Park, Choon-Kil;An, Jong-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.1031-1040
    • /
    • 2009
  • It is shown that every almost positive linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a Banach *-algebra $\mathcal{A}$ to a Banach *-algebra $\mathcal{B}$ is a positive linear operator when h(rx) = rh(x) (r > 1) holds for all $x\in\mathcal{A}$, and that every almost linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a unital C*-algebra $\mathcal{A}$ to a unital C*-algebra $\mathcal{B}$ is a positive linear operator when h($2^nu*y$) = h($2^nu$)*h(y) holds for all unitaries $u\in \mathcal{A}$, all $y \in \mathcal{A}$, and all n = 0, 1, 2, ..., by using the Hyers-Ulam-Rassias stability of functional equations. Under a more weak condition than the condition as given above, we prove that every almost linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a unital C*-algebra $\mathcal{A}$ A to a unital C*-algebra $\mathcal{B}$ is a positive linear operator. It is applied to investigate states, center states and center-valued traces.

Linear Preservers of Perimeters of Nonnegative Real Matrices

  • Song, Seok-Zun;Kang, Kyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.465-472
    • /
    • 2008
  • For a nonnegative real matrix A of rank 1, A can be factored as $ab^t$ for some vectors a and b. The perimeter of A is the number of nonzero entries in both a and b. If B is a matrix of rank k, then B is the sum of k matrices of rank 1. The perimeter of B is the minimum of the sums of perimeters of k matrices of rank 1, where the minimum is taken over all possible rank-1 decompositions of B. In this paper, we obtain characterizations of the linear operators which preserve perimeters 2 and k for some $k\geq4$. That is, a linear operator T preserves perimeters 2 and $k(\geq4)$ if and only if it has the form T(A) = UAV or T(A) = $UA^tV$ with some invertible matrices U and V.

ON WEIGHTED COMPACTNESS OF COMMUTATORS OF BILINEAR FRACTIONAL MAXIMAL OPERATOR

  • He, Qianjun;Zhang, Juan
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.495-517
    • /
    • 2022
  • Let Mα be a bilinear fractional maximal operator and BMα be a fractional maximal operator associated with the bilinear Hilbert transform. In this paper, the compactness on weighted Lebesgue spaces are considered for commutators of bilinear fractional maximal operators; these commutators include the fractional maximal linear commutators Mjα,β and BMjα,β (j = 1, 2), the fractional maximal iterated commutator ${\mathcal{M}}_{{\alpha},{\vec{b}}}$, and $BM_{{\alpha},{\vec{b}}}$, where b ∈ BMO(ℝd) and ${\vec{b}}\;=\;(b_1,b_2)\;{\in}\;BMO({\mathbb{R}}^d)\;{\times}\;BMO({\mathbb{R}}^d)$. In particular, we improve the well-known results to a larger scale for 1/2 < q < ∞ and give positive answers to the questions in [2].

On the Iterated Duggal Transforms

  • Cho, Muneo;Jung, Il-Bong;Lee, Woo-Young
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.647-650
    • /
    • 2009
  • For a bounded operator T = $U{\mid}T{\mid}$ (polar decomposition), we consider a transform b $\widehat{T}$ = ${\mid}T{\mid}U$ and discuss the convergence of iterated transform of $\widehat{T}$ under the strong operator topology. We prove that such iteration of quasiaffine hyponormal operator converges to a normal operator under the strong operator topology.

The G-Drazin Inverse of an Operator Matrix over Banach Spaces

  • Farzaneh Tayebi;Nahid Ashrafi;Rahman Bahmani;Marjan Sheibani Abdolyousefi
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.2
    • /
    • pp.205-218
    • /
    • 2024
  • Let 𝒜 be a Banach algebra. An element a ∈ 𝒜 has generalized Drazin inverse if there exists b ∈ 𝒜 such that b = bab, ab = ba, a - a2b ∈ 𝒜qnil. New additive results for the generalized Drazin inverse of an operator over a Banach space are presented. we extend the main results of a paper of Shakoor, Yang and Ali from 2013 and of Wang, Huang and Chen from 2017. Appling these results to 2×2 operator matrices we also generalize results of a paper of Deng, Cvetković-Ilić and Wei from 2010.

THE DRAZIN INVERSE OF THE SUM OF TWO PRODUCTS

  • Chrifi, Safae Alaoui;Tajmouati, Abdelaziz
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.705-718
    • /
    • 2022
  • In this paper, for bounded linear operators A, B, C satisfying [AB, B] = [BC, B] = [AB, BC] = 0 we study the Drazin invertibility of the sum of products formed by the three operators A, B and C. In particular, we give an explicit representation of the anti-commutator {A, B} = AB + BA. Also we give some conditions for which the sum A + C is Drazin invertible.