DOI QR코드

DOI QR Code

The G-Drazin Inverse of an Operator Matrix over Banach Spaces

  • Farzaneh Tayebi (Department of Mathematics, Statistics and Computer Science, Semnan University) ;
  • Nahid Ashrafi (Department of Mathematics, Statistics and Computer Science, Semnan University) ;
  • Rahman Bahmani (Department of Mathematics, Statistics and Computer Science, Semnan University) ;
  • Marjan Sheibani Abdolyousefi (Farzanegan Campmus, Semnan University)
  • Received : 2023.06.29
  • Accepted : 2024.01.22
  • Published : 2024.06.30

Abstract

Let 𝒜 be a Banach algebra. An element a ∈ 𝒜 has generalized Drazin inverse if there exists b ∈ 𝒜 such that b = bab, ab = ba, a - a2b ∈ 𝒜qnil. New additive results for the generalized Drazin inverse of an operator over a Banach space are presented. we extend the main results of a paper of Shakoor, Yang and Ali from 2013 and of Wang, Huang and Chen from 2017. Appling these results to 2×2 operator matrices we also generalize results of a paper of Deng, Cvetković-Ilić and Wei from 2010.

Keywords

References

  1. M. Boumazgour, Generalized Drazin inverse of restrictions of bounded linear operators, Linear Multilinear Algebra, 66(2018), 894-901. https://doi.org/10.1080/03081087.2017.1330867
  2. N. Castro-Gonzalez, E. Dopazo and M. F. Martinez-Serrano, On the Drazin inverse of the sum of two operators and its application to operator matrices, J. Math. Analysis Appl., 350(2009), 207-215. https://doi.org/10.1016/j.jmaa.2008.09.035
  3. H. Chen and M. Sheibani, The G-Drazin inverse for special operator matrices, Operators and Matrices, 15(2021), 151-162. https://doi.org/10.7153/oam-2021-15-11
  4. H. Chen and M. Sheibani, Block representations for the g-Drazin inverse in Banach algebras, Miskolc Mathematical Notes, 24(2023), 1259-1271.
  5. H. Chen and M. Sheibani, Additive Properties of g-Drazin Invertible Linear Operators, Filomat, 36(2022), 3301-3309. https://doi.org/10.2298/FIL2210301C
  6. A. S. Cvetkovic and G. V. Milovanovic, On the Drazin inverse of operator matrices, J. Math. Analysis Appl., 375(2011), 331-335. https://doi.org/10.1016/j.jmaa.2010.08.080
  7. D. S. Cvetkovic-Ilic, D. S. Djordjevic and Y. Wei, Additive results for the generalized Drazin inverse in a Banach algebra, Linear Algebra Appl., 418(2006), 53-61. https://doi.org/10.1016/j.laa.2006.01.015
  8. D. S. Cvetkovic-Ilic, X. Liu and Y. Wei, Some additive results for the generalized Drazin inverse in a Banach algebra, Electronic J. Linear Algebra, 22(2011), 1049-1058. https://doi.org/10.13001/1081-3810.1490
  9. M. Dana and R. Yousefi, Formulas for the Drazin inverse of matrices with new conditions and its applications, Int. J. Appl. Comput. Math., 4(2018), https://doi.org/10.1007/s40819-017-0459-5.
  10. C. Deng, D. S. Cvetcovic-Ilic and Y. Wei, Some results on the genrealized Derazin inverse of operator matrices, Linear and Multilinear Algebra 58(2010), 503-521. https://doi.org/10.1080/03081080902722642
  11. C. Deng and Y. Wei, New additive results for the generalized Drazin inverse, J. Math. Analysis Appl., 370(2010), 313-321. https://doi.org/10.1016/j.jmaa.2010.05.010
  12. D. S. Djordjevic and Y. Wei, Additive results for the generalized Drazin inverse, J. Austral. Math. Soc., 73(2002), 115-125. https://doi.org/10.1017/S1446788700008508
  13. L. Guo, H. Zou and J. Chen, The generalized Drazin inverse of operator matrices, Hacet. J. Math. Stat., 49(2020), 1134-1149. https://doi.org/10.15672/hujms.731518
  14. Y. Jiang. Y. Wen and Q. Zeng, Generalizations of Cline's formula for three generalized inverses, Revista. Un. Math. Argentina, 48(2017), 127-134.
  15. J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J., 38(1996), 367-381. https://doi.org/10.1017/S0017089500031803
  16. Y. Liao, J. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc., 37(2014), 37-42.
  17. X. Liu, X. Qin and J. Benitez, New additive results for the generalized Drazin inverse in a Banach Algebra, Filomat, 30(2016), 2289-2294. https://doi.org/10.2298/FIL1608289L
  18. D. Mosic and D.S, Djordjevic, Block representations of generalized Drazin inverse, Appl. Math. Comput., 331(2018), 200-209. https://doi.org/10.1016/j.amc.2018.03.027
  19. D. Mosic, H. Zou and J. Chen, The generalized Drazin inverse of the sum in a Banach algebra, Ann. Funct. Anal., 8(2017), 90-105. https://doi.org/10.1215/20088752-3764461
  20. A. Shakoor, H. Yang and I. Ali, The Drazin inverses of the sum of two matrices and block matrix, J. Appl. Math. & Informatics, 31(2013), 343-352. https://doi.org/10.14317/jami.2013.343
  21. A. Shakoor, H. Yang and I. Ali, Some results for the Drazin inverse of the sum of two matrices and some block matrices, J. Appl. Math., 2013(2013), 804313.
  22. H. Wang, J. Huang and A. Chen, The Drazin inverse of the sum of two bounded linear operators and it's applications, Filomat, 31(2017), 2391-2402. https://doi.org/10.2298/FIL1708391W
  23. H. Yu and X. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Appl. Math., 235(2011), 1412-1417. https://doi.org/10.1016/j.cam.2010.08.027
  24. D. Zhang, Y. Jin and D. Mosi'c, A note on formulae for the generalized Drazin inverse of anti-triangular block operator matrices in Banach spaces, Banach J. Math. Anal., 16(2022), DOI: 10.1007/s43037-022-00176-8.
  25. H. Zou, D. Mosic and J. Chen, Generalized Drazin invertiblity of the product and sum of two elements in a Banach algebra and its applications, Turkish. J. Math., 41(2017), 548-563. https://doi.org/10.3906/mat-1605-8