• Title/Summary/Keyword: Axial rotation

Search Result 301, Processing Time 0.049 seconds

Micro-Mechanical Approach for Spanwise Periodically and Heterogeneously Beam-like Structures

  • Lee, Chang-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.9-16
    • /
    • 2016
  • This paper discusses a refined model for investigating the micro-mechanical behavior of beam-like structures, which are composed of various elastic moduli and complex geometries varying through the cross-section directions and are also periodically-repeated and heterogeneous along the axial direction. Following the previous work (Lee and Yu, 2011), the original three-dimensional static problem is first formulated in a unified and compact form using the concept of decomposition of the rotation tensor. Taking advantage of the smallness of the cross-sectional dimension-to-length parameter and the micro-to-macro heterogeneity, while also performing homogenization along the dimensional reduction simultaneously, the variational asymptotic method is rigorously used to construct a total energy function, which is asymptotically correct up to the second order. Furthermore, through the transformation procedure based on the pure kinematic relations and the linearized equilibrium equations, a generalized Timoshenko model is systematically established. For the purpose of dealing with realistic and complex geometries and constituent materials at the microscopic level, this present approach is incorporated into a commercial analysis package. A few examples available in literature are used to demonstrate the consistency and efficiency of this proposed model, especially for the structures, in which the effects of transverse shear deformations are significant.

An evaluation of iced bridge hanger vibrations through wind tunnel testing and quasi-steady theory

  • Gjelstrup, H.;Georgakis, C.T.;Larsen, A.
    • Wind and Structures
    • /
    • v.15 no.5
    • /
    • pp.385-407
    • /
    • 2012
  • Bridge hanger vibrations have been reported under icy conditions. In this paper, the results from a series of static and dynamic wind tunnel tests on a circular cylinder representing a bridge hanger with simulated thin ice accretions are presented. The experiments focus on ice accretions produced for wind perpendicular to the cylinder at velocities below 30 m/s and for temperatures between $-5^{\circ}C$ and $-1^{\circ}C$. Aerodynamic drag, lift and moment coefficients are obtained from the static tests, whilst mean and fluctuating responses are obtained from the dynamic tests. The influence of varying surface roughness is also examined. The static force coefficients are used to predict parameter regions where aerodynamic instability of the iced bridge hanger might be expected to occur, through use of an adapted theoretical 3-DOF quasi-steady galloping instability model, which accounts for sectional axial rotation. A comparison between the 3-DOF model and the instabilities found through two degree-of-freedom (2-DOF) dynamic tests is presented. It is shown that, although there is good agreement between the instabilities found through use of the quasi-steady theory and the dynamic tests, discrepancies exist-indicating the possible inability of quasi-steady theory to fully predict these vibrational instabilities.

A Study of the Effectiveness of Hollow Ratio on Cutting Force of Diamond Core Drill (다이아몬드 코어드릴의 중공비가 절삭력에 미치는 영향)

  • Kim, Kwang-Min;Choi, Seong-Dae;Hong, Young-Bae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.135-141
    • /
    • 2011
  • In this study, the variation of the cutting forces generated in the machining process were evaluated experimentally. A material of $Al_{2}O_{3}$ ceramic and a tool of the dynamometer were used for the measurements of the cutting forces. With the constant rates of the feed and the tool rotation, the cutting forces were measured along three axial directions(X, Y, Z axis) for the various values of the hollow ratio. It was found that the cutting force be increasing linearly along the direction of Z axis, but along X, Y axis be not varied. Also from the viewpoint of the precesses of the hole drilling, the cutting force was found to be increasing sharply at the beginning process, but from the eighth process be increasing smoothly. As conclusions, the cutting force generated by machining for the material of $Al_{2}O_{3}$ ceramic are influenced more significantly by the feed rate and the hollow ratio than by the tool rotational speed.

Arthrokinetic Analysis of Knee Joint (슬관절의 운동학적 분석)

  • Kim, Jae-hun
    • PNF and Movement
    • /
    • v.6 no.1
    • /
    • pp.53-60
    • /
    • 2008
  • Purpose : To describes the important aspects of knee joint movement and function used when applying PNF technique to the lower limb. Method : The knee was a very important roles in the lower limb movement and ambulation. This study summarizes the physiologic movement of knee to the PNF lower extremity patterns. Result : The tibiofemoral joint is usually described as a modified hinge joint with flexion-extension and axial rotation by two degrees of freedom movement. These arthrokinematics are a result of the geometry of the joints and the tension produced in the ligamentous structures. The patellofemoral joint is a sellar joint between the patella and the femur. Stability of the patellofemoral joint is dependent on the passive and dynamic restraints around the knee. In a normal knee the ligaments are inelastic and maintain a constant length as the knee flexes and extends, helping to control rolling, gliding and translation of the joint motions. Conclusions : It is important to remember that small alterations in joint alignment can result in significant alterations in patellofemoral joint stresses and that changes in the mechanics of the patellofemoral joint can also result in changes in the tibiofemoral compartments. Successful treatment requires the physical therapist to understand and apply these arthrokinematic concepts. When applied to PNF low extremity patterns, understanding of these mechanical concepts can maximize patient function while minimizing the risk for further symptoms or injury.

  • PDF

A Finite Element Nonlinear Formulation for Large Deformations of Plane Frames (평면 뼈대구조물의 큰 변형에 대한 비선형 유한요소의 정식화)

  • 윤영묵;박문호
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.69-83
    • /
    • 1994
  • An explicit finite element nonlinear formulation for very large deformations of plane frame structures is developed. The formulation is based on an updated material reference frame and hence a true stress-strain relationship can be directly applied to characterize the properties of material which is subjected to very large deformations. In the formulation, a co-rotational approach is applied to deal with the large rotations but small strain problems. Straight beam element is considered when the strain of an element is large. The element formulation is based on the small deflection beam theory but with the inclusion of the effect of axial force. The element equations are constructed in an element local coordinate system which rotates and translates with the element, and then transformed to the global coordinate system. Several numerical examples are analyzed to validate the presented formulation.

  • PDF

Rotational capacity of shallow footings and its implication on SSI analyses

  • Blandon, Carlos A.;Smith-Pardo, J. Paul;Ortiz, Albert
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.591-617
    • /
    • 2015
  • Standards for seismic assessment and retrofitting of buildings provide deformation limit states for structural members and connections. However, in order to perform fully consistent performance-based seismic analyses of soil-structure systems; deformation limit states must also be available for foundations that are vulnerable to nonlinear actions. Because such limit states have never been established in the past, a laboratory testing program was conducted to study the rotational capacity of small-scale foundation models under combined axial load and moment. Fourteen displacement-controlled monotonic and cyclic tests were performed using a cohesionless soil contained in a $2.0{\times}2.0{\times}1.2m$ container box. It was found that the foundation models exhibited a stable hysteretic behavior for imposed rotations exceeding 0.06 rad and that the measured foundation moment capacity complied well with Meyerhof's equivalent width concept. Simplified code-based soil-structure analyses of an 8-story building under an array of strong ground motions were also conducted to preliminary evaluate the implication of finite rotational capacity of vulnerable foundations. It was found that for the same soil as that of the experimental program foundations would have a deformation capacity that far exceeds the imposed rotational demands under the lateral load resisting members so yielding of the soil may constitute a reliable source of energy dissipation for the system.

Efficient finite element model for dynamic analysis of laminated composite beam

  • Naushad Alam, M.;Upadhyay, Nirbhay Kr.;Anas, Mohd.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.471-488
    • /
    • 2012
  • An efficient one dimensional finite element model has been presented for the dynamic analysis of composite laminated beams, using the efficient layerwise zigzag theory. To meet the convergence requirements for the weak integral formulation, cubic Hermite interpolation is used for the transverse displacement ($w_0$), and linear interpolation is used for the axial displacement ($u_0$) and shear rotation (${\psi}_0$). Each node of an element has four degrees of freedom. The expressions of variationally consistent inertia, stiffness matrices and the load vector are derived in closed form using exact integration. The formulation is validated by comparing the results with the 2D-FE results for composite symmetric and sandwich beams with various end conditions. The employed finite element model is free of shear locking. The present zigzag finite element results for natural frequencies, mode shapes of cantilever and clamped-clamped beams are obtained with a one-dimensional finite element codes developed in MATLAB. These 1D-FE results for cantilever and clamped beams are compared with the 2D-FE results obtained using ABAQUS to show the accuracy of the developed MATLAB code, for zigzag theory for these boundary conditions. This comparison establishes the accuracy of zigzag finite element analysis for dynamic response under given boundary conditions.

Design of a Scroll Expander for Waste Heat Recovery from Engine Coolant (엔진 냉각수 폐열 회수용 스크롤 팽창기 설계)

  • Yu, Je-Seung;Kim, Hyun-Jae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.815-820
    • /
    • 2011
  • A scroll expander was designed for an energy converter from waste heat of IC engine coolant to useful shaft work. The scroll expander is to run in a Rankine cycle which receives heat energy transferred from engine coolant circulation cycle. The working fluid was Ethanol. For axial compliance, a back pressure chamber was provided on the rear side of the orbiting scroll. Lubrication oil was delivered by a positive displacement type oil pump driven by the shaft rotation. Performance analysis on the scroll expander showed that the expander efficiency was 63.4%. It extracts shaft power of 0.6 kW out of engine coolant waste heat of 17.5 kW, resulting in the Rankine cycle efficiency of 3.43%.

Study on HTS Antenna Array with Circularly Polarization for DBS Receiver (직접 위성방송 수신용 원편파 HTS 배열 안테나 관한 연구)

  • 정동철;윤창훈;최효상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.776-781
    • /
    • 2004
  • We report the performance of a four-element, 11.67 GHz, $high-{T}_c$ superconducting (HTS) microstrip antenna array with corporate feed network. The HTS antenna array used in this work had a circular polarization for direct broadcasting satellite (DBS) system. Our array antennas were designed and built on a 0.5 mm thick MgO substrate. To compare the superconducting antennas with normal conducting counterpart, One antenna pattern was fabricated from gold thin film, and a second pattern was fabricated from ${YBa}_2{Cu}_3{O}_7-x(YBCO)$ superconducting thin film. To improve the axial ratio of circularly polarized arrays, sequential rotation technique were used. Efficiency, radiation pattern, return loss and bandwidth were measured for both antennas at cryogenic temperature and room temperature. The array produced good circular polarization, and the gain of the array at 77 K, relative to a copper array at room temperature was approximately 1.54 dB. The measured return loss of our HTS antenna array was 35.79 dB at the resonant frequency of 11.67 GHz and The total effective bandwidth was about 3.4 %. The results showed that high-temperature superconductors, when used in microstrip arrays, improved the efficiency of the HTS antenna array for circularly polarization.

Development and physiological assessments of multimedia avian esophageal catheter system

  • Nakada, Kaoru;Hata, Jun-ichi
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.121-130
    • /
    • 2018
  • We developed multimedia esophageal catheters for use with birds to measure and record ECG and angular velocity while anesthesized, at rest, and in flight. These catheters enable estimates of blood pressure based on readings given by an angular velocity sensor and by RR intervals of ECG affected by EMG. In our experiments, the catheters had the following characteristics: 1. Esophageal catheters offer a topological advantage with 8-dB SNR improvement due to elimination of electromyography (EMG). 2. We observed a very strong correlation between blood pressure and the angular velocity of esophageal catheter axial rotation. 3. The impulse conduction pathway (Purkinje fibers) of the cardiac ventricle has a direction opposite to that of the mammalian pathway. 4. Sympathetic nerves predominate in flight, and RR interval variations are strongly suppressed. The electrophysiological data obtained by this study provided especially the state of the avian autonomic nervous system activity, so we can suspect individual's health condition. If the change of the RR interval was small, we can perform an isolation or screening from the group that prevent the pandemics of avian influenza. This catheter shall be useful to analysis an avian autonomic system, to perform a screening, and to make a positive policy against the massive infected avian influenza.