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Abstract

An explicit finite element nonlinear formulation for very large deformations of plane frame
structures is developed. The formulation is based on an updated material reference frame and hence a
true stress-strain relationship can be directly applied to characterize the properties of material which is
subjected to very large deformations. In the formulation, a co-rotational approach is applied to deal
with the large rotations but small strain problems. Straight beam element is considered when the
strain of an element is large. The element formulation is based on the small deflection beam theory but
with the inclusion of the effect of axial force. The element equations are constructed in an element lo-
cal coordinate system which rotates and translates with the element, and then transformed to the glo-
bal coordinate system. Several numerical examples are analyzed to validate the presented formulation,
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1. INTRODUCTION

The possibility of practical analysis of struc-
tures subjected to large deformation has prog-
ressed substantially during recent years. To
enable general large deformation analysis the
development of versatile geometric and ma-
terial nonlinear finite element is in much need.

General theoretical formulations and comput-
ational techniques for the geometrical nonlin-
ear analysis of frame structures have been ex-
tensively studied. One of the most popular for-
mulations is Lagrangian approach within a fi-
nite elelement framework. Other formulations
of the Lagrangian type approaches are poss-
ible, depending on the way in which the def-
ormations are specified. There are, in general,
two main types of Lagrangian approaches whic-
h are commonly used in geometrically nonlin-
ear analysis,

The first type is the Total Lagrangian For-
mulation! 7, where the deformation of the el-
ement is measured from its own original refer-
ence frame. Any subsequent deformation of
the element will also refer to the same refer-
ence frame. This formulation procedure is easy
to implement as calculations are straightfor-
ward. However, a major disadvantage of using
this procedure is that it is not possible to dis-
tinguish the rigid body motion of the element
explicitly from its local deformation. This lead-
s to an erroneous description of the equilibrium
path except for problems with small or moder-
ate rotations and deflections.

The second type is the Updated Lagrangian
Formulation, 24819 wwhere the current con-
figuration of the element at any time is taken
as the reference frame, In this way, the rigid
body motion of the element can be separated
from its local deformation. Although this met-
hod gives a more accurate description of the

displacement field of both elements and struc-
tures, the effort involved in calculating the lo-
cal element deformations at any stage of load-
ing i1s c¢normous. Moreover, in developing a
consistent set of equilibrium equations for the
incremental analysis, a large number of matrix
operations 1s necessary when the tangent stiff-
ness matrix is transformed from its local to
the modified
updated Lagrangian formulation known as Par-

global axes. For this reason,
tially Updated Lagrangian Formulation has
been developed. This modified formulation
makes use of the concept of the rigid-convec-
ted coordinates approach, as used in the updat-
ed Lagrangian formulation. A major difference
of the modified formulation, as compared with
the updated Lagrangian formulation, is that
the coordinates of each element are updated
once only at the beginning of every load step.
The numerical manipulations within each load
step are then performed in a total Lagrangian
formulation manner. This type of formulation
takes advantage of the simplicity of the total
Lagrangian formulation as well as the accuracy
inherent in updated Lagrangian formulation.

In addition to the Lagrangian formulations,
co-ratational formulations have been developed
for the analysis of the structures which experi-
ence large displacements and large rotations.
(1120 1 the derivation of the equations of the
co-rotational formulation, unlike Lagrangian
Formulations in which the finite element equa-
tions are obtained by discretization of equal-
ibrium equations established for the whole con-
tinuum, attention 1s focused on a single finite
element of the body. In the formulation, each
element is associated with a local cartesian el-
ement coordinate system that rotates and tran-
slates with the element but does not deform
with the element.

Most of the current large deformation algor-
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ithms based on the Lagrangian formulations,
however, show serious numerical limitations.
Typically, the solutions become unstable eit-
her at a certain point when the iterations fail
to converge or the algorithms fail to handle
the negative deformation gradient when the
deformation becomes very large. A more ser-
lous problem common to all formulations is
that the definitions of stress and strain, their
increments and the constitutive equations in-
clude geometrical couplings, and hence correl-
ating them to the material testing data bec-
omes difficult,

In this paper, an finite element nonlinear for-
mulation for very large deformations of plane
frame structures, which has the capability of
handling large geometrical changes whithout
the need for lengthy iterations and handling
the material data more accurately, is devel-
oped. The formulation is based on an updated
material reference frame and hence true stres-
s-strain relationship can be directly applied to
correctly characterize properties of materials
which undergo nonlinear deformations. In the
formulation, a co-rotational approach is applied
to deal with the large rotations but small
strain problems. Straight beam element is con-
sidered when the strain of an element is large.
The element formulation is based on the small
deflection beam theory but with the inclusion
of the effect of axial force. The element equa-
tions are constructed in an element local coor-
dinate system which rotates and translates
with the element, and then transformed to the
giobal coordinate system. The element exter-
nal nodal forces are evaluated using the total
deformational nodal rotations in the body at-
tached coordinate. For the numerical solution,
an explicit incremental numerical procedure is
adopted. Gaussian numerical integration 1is
used to evaluate element integral for stiffness

/‘/\ I - 3
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Figure 1 The Body Attached Coordinate and Deformed Frame
Member

matrices and element external nodal forces.
Several numerical examples of beams and fram-
es with large deformations are presented.

2. FINITE ELEMENT FORMULATION

In this analysis, the element equations are
formulated in the body attached coordinate as
shown in Figure 1. The system equations are
obtained from the assemblage of individual el-
ement equations. The normal strain of an el-
ement is sum of axial and bending strains. The
bending strain is evaluated using the Euler-Ber-
noulli hypothesis. The element internal and ex-
ternal nodal forces are obtained from the vir-
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tual work principle. The element stiffness mat-
rix is established from the derivative of the el-
ement internal nodal force vector with respect
to the nodal displacement vector.

2.1 Kinematics of Individual Member

If the undeformed and deformed axes of the
beam member are assumed to be the linear in-
terpolation for the axial and cubic interpolation
for bending displacement in the body attached
coordinates, the axial and bending displace-
ments of the beam axis in the configuration at

time ¢ may be given by
&=Nlg (1)
3= Ny (2)

where NT and N{ are respectively the transpos-

es of displacement shape functions for a rod
and a beam element :

NE=[N, N, ] (3)
NE=[N, N, Ny N, (4)
where,
N, =1 -; N, - 7‘
N, = Tl" @8 =34 - 1), N, = Tll (4 - 2uHT - )
N,,-l_‘,(-uhwz). NN=I_1](X:-‘I—£"IZ)

In egns (1) and (2), &, and G, are respectively

the axial and bending displacement vectors :
al=[d a2] (5)

af=1% 6, v, 82 (6)

where, @i, ¥; and 6,(i=1,2) are respectively
the axial nodal displacement, bending nodal dis-
placement and nodal rotations at nodes i.

The normal strain for any point of the cross
section of the member may be written as

Ese g (7)

where ¢, is the axial strain and g, is the bend-
ing strain. Since the axial strain from the con-
figuration at time ¢ to the configuration at
time ¢+At¢ is generally small, the linear term
only may be taken :

e, = & (8)

di

From the deformed configuration of the beam
shown in Figure 2, the axial displacement may
be related to the transverse displacement by

R Y
4tz (9)

where £ is the distance from the axis of cen-
troid to the measured point on the cross sec-
tion, Substituting eqn (9) into eqn (8) and us-
ing the Euler-Bernoulli hypothesis, i.e, cross-

< N =
\ \i T

b)

Figure 2 Beam Element a) before Deformation and
(b) after Deformation
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sections of the beam that are planar before
bending deformation remain planar after defor-
mation, the bending strain with linear term
only 1s expressed as

€ =~ ——s (10)

2.2 Deformational Rotations and Geometry
Shape Function

Let A, x,; and y,(i=1,2) be respectively
the total deformed nodal angles including the
initial nodal angles and global nodal coordin-
ates for a single element in the configuration
at time ¢, and d. be the nodal displacement
vector of a single element extracted from the
incremental displacement vector of the system
of the equations, and given by

vy 6 (11)

where G, ¥; and 6,(i=1,2) are the nodal displac-
ements and rotations in the global coordinate.
Then the nodal coordinates x4 and y, of the

element and the total deformed nodal angles A,

in the configuration at time ¢-+At are, respect-
ively, obtained by

= x, vy, (12)
Yo =y, Y (13)
Al=A -0 -a (14)

where a is the angle of rigid body rotation
measured from the configuration at time ¢ to
the configuration at time #+Af :

Sx) v, = v) =y, mvy) (g - uy

. (x,
o = sin”' <
( L

1 (15)

In a similar manner, the nodal coordinates x,;

and y, may be evaluated using the same pro-

cess of obtaining X, and yy;.

The geometry shape of beam element in the
configuration at time {+Af can be approximat-
ed using eqn(2), in which nodal angles A, are

used instead of 0,(i=1,2) :

9(2/) - Nu L Nn A+ Nn v+ Nbl A, (16)

where Ny(i=1,2,3,4) and v,(i=1,2) are re-
spectively the displacement shape functions
and the transverse nodal displacements of a
beam element in local coordinates at time ¢,

2.3 Element Internal Nodal Forces

The element internal nodal forces are obtain-
ed from the virtual work principle. The el-
ement nodal force vector is divided into axial
and bending nodal force vectors as

Fr=(F, F,) (17)

El=(F, M, F, M,] (18)

where F,, F,; and M;(i=1,2) are respectively
the axial nodal forces, the lateral nodal forces
and moments at nodes ¢. The nodal force vec-
tors F, and F, can be evaluated by introducing

nodal virtual displacements é§ u, and J {1, and
equating the work done by the axial nodal for-
ce F, and bending nodal force F,, going throug-
h the virtual displacements é 4, and § b, to
the work done by the internal stress ¢ going
through the virtual strain de=d¢ +J¢, along

the deformed beam axis :

J.G' b3 dV=5£fE,'5£[£h (19)

v

where V is the volume of the beam element,

If an initial axial force S acts in the local x
direction, another internal virtual work caused
by initial axial force S must be included in the



left side of eqn (19). Then eqn (19) becomes

Jv‘o B dv - Jo's (%) 5(:_:5 di = 3l F, - 8] B (20)

From eqns (1), (2), (8) and (10), the vari-

ation ég,, de, and 5(3—;) are given by

A NT i) )
ge, = 5( S22 ) < nsg, (21)
2 NT 5
be, =5 -« R Ly b, (22)
v d( NT i
5(%)=8(%)=ﬂjag, (23)

where NT,, N, and N{,, are respectively the
transposes of the single and double derivatives
of axial and bending displacement shape func-
tions for a rod and a beam element with re-

spect to X:
NL=(N, V1 (24)
N2 [Ny Ny Ny Moy (25)
Mla = UV Nopwe Vg Mo ] (26)

By substituting eqns (21), (22) and (23) into
eqn (20), the left side of the eqn (20) becomes

1

Ls. = 847 [0 NewaV - 8aE [ -[o 1 Now dV + [S Nox N iy ot )
v v 0

(27)

Equating eqn (27) to the right side of eqn
(20) yields the internal nodal force vectors as

£o= fo Nuav (28)

i
By ~fo t NowdV o [5 Mo NEu y at (29)
v 0

2.4 Element Stiffness Matrix

The element stiffness matrix in the con-
figuration at time ¢ can be obtained by differ-
entiating the element nodal force vectors E

and Eb with respect to element nodal displace-

ment vectors 4, and U, and expressed as

oF, oF

B, dan )¢
[ i (30)
- aéh af__h Kbr _Igvh

The derivatives of the stress ¢ with respect
to U, and U, are obtained by using the chain

rule of differentiation as

— = e — = E NI

9&, OE on == (31)
o0 _ 95 % _, r
3_12_0 E.a_g‘; Et Nlu (32)

where tE(:%—Z) is the updated Young’s modu-

lus of elasticity‘®’,
Using eqns through (28) to (32), the submat-
rices of K in eqn (30) are expressed as

Ko = ([ E Nu 87 da aC (33)
it
B = K] = —H E Ne» Nin ¢ dA dC (34)
AT
1
R = HE Nowr Nfer 13 dA dC - S Npe N dt (35)
AC . 'ﬁ

where A and C are respectively the cross sec-
tion area and the arc length of the beam el-
ement in the configuration at time £, Since the
derivatives of displacement shape functions
used in equations for submatrices of I;{ are all
functions of X, the are length of beam seg-
ment, dC, need to be changed by a function of
X for the evaluation of element integral :
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dC =S db = (1 () R (36)

where J is Jacobian and (%yx—) is the derivative

of the geometry shape function y(x) in the
configuration at time £,

By substituting the derivatives of displace-
ment shape functions and eqn (36) into egns
(33), (34) and (35) and by considering an el-
ement with rectangular cross section of width
b and height A, the submatrices of I;{ are writ-
ten explicitly by

i
Kooy = b [ Nos N St (37)
¢
K» [2xa] =7 wa =0 J _J"E Nee NTut Jodidt =0 (38)
-2 0
bh 3 t 1
Bor iy = T f’E Now Nbuw J di = S fﬂ” Nledt (39)
0 0

Since the second term in the right hand side
of eqn (39) can be integrated by hand, the el-
ement stiffness matrix for the element with
rectangular cross section is expressed in mat-
rix form by

5 Ko - Erpy
Kea = S .
Ko ey (Kus = Knp) )

2, K., 0 0 0 0
. . 0 0 0 0
K(,)m Ko K’m’;"eu/’ ’em; "kw; kw; -[em; kw: ‘km:
) 0 0 Ry Kovst Konad Ko Ronss Kot Kuvas Ko}
0 o K whit R it ¢ iz "Km; K gy & i3 K w34 &, it
L 0 0 Rt Bt Roned Ko Ronis Ry Kot Ko, ]
(40)
where
12 i -12 {
2 - i [ T T B Lk (41)
- 100 12 - 12 -1

SR 7 B P VL

and K,U(i,jzl,z) and Kbbil(i,j=1,2,3,4) are re-
spectively the components of the submatrices
Krr and Kbb .

2.5 Element External Nodal Forces
To evaluate the external nodal force vectors

f, and £, the nodal virtual displacements §u,
and &l are introduced and the work done by
the f, . and £ , going through the vi{tual dis-
placement 84, and i, is equated to the work

done W due to externally applied forces :
sw =584l f, +8alfs (42)

in which the transposes of f, and f b are given
by

E=14 1) (43)

REN A AN (44)

where f,; f,; and m;(i=1,2) are respectively the
axial nodal forces, lateral nodal forces and mo-
ments due to externally applied forces at node
i

Since we use the incremental load in the
present procedure, we assume that the load in-
crement at each step is all the same. Consider-
ing the vertical and horizontal uniform loads WY

and WY applied along the straight frame el-

ement, respectively, in the initial configuration
as shown in Figure 3(a), we have

RI=Wil", Rr=wor (45)

where R%, RY and / are respectively the total

applied forces and initial element length. Since
the geometry shape and length of the element
in the current configuration have been chan-
ged by deformation, the magnitude of uniform
load at time ¢ is modified by
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W,=R [rae, W, =R/ [1ar (46)
0 [

where Jacobian J is given in eqn (36).

On the basis of constant incremental load at
each step, we now consider two kinds of ap-
plied forces : one is the force whose direction
maintains the same, the other is the force
whose direction changes. From the first case
as shown graphically in Figure 3(b), we obtain

W, =W, sing, , W =W cosé (473)

W, = W, cosd, , W, = -W, sins, (47b)

where W, W,,, W, and W, are respectively
the Xand § components of W, and W, and O is

the angle between global and local coordinates.
Hence, we express the external virtual work in
the current configuration by

SW = f(wn, )82 dC - f(w,_,-w,_,)so dc (48)
[ [od

Substituting s&=NTé0, 69=NT 64, and

dC=] dx into eqn (46), we have 6W=51:Jfl

0

(Worb Wo) N, J ditoul (W =W, N, J
<0

dx

{ 1
BW = 8aT [(W,-W,) N. J dx - 8af [(W,-W,) N» J di
0 [

(49)
Equating eqns (42) and (49), we have
b= lf(wu-wﬂ) N J dk (50a)
b= foW,-w Mo di (50b)

If we consider W, and W, as the concentrat-

ed forces applied in the current configuration,
the external nodal forces become

b= fWw N T 8 di (51a)
[]
! N

k= J‘(wn,-w,,) NiJ B 482 di (51b)
]

where %, is the location of applied load and &,
(x—%,) represents the Dirac delta function, de-
fined by

i

[ 8422y at = 0

0

for 243,

1
[oa-gyat=1  for =g
[

Figure 3 A Frame Element with External Loads
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From the second case as shown in Figure 3
(c), we obtain the external virtual work in a
similar manner of deriving eqn (49) by

t t

8W=agrfw,y,14i»ag{f\v,gud} (52)

[] [

Equating eqn (42) to eqn (52), we obtain
the external nodal forces by

i

, =

Ot~

W, N, J dx

he[w N

Similar to eqn (51), when W, and W, are

considered as concentrated forces the external
nodal forces may be evaluated from eqn (53)
using Dirac delta function

2.6 Evaluation of Element Integral

To compute the element integral, Gaussian
numerical integration is considered. For
one-dimensional case, it is generally expressed
by

l=fj(£)df=.b_;_a_gmq](£,) (54)

where n, w; and X are respectively the number

of Gauss sampling points, the integration weig-
ht for the interval @ to & and the location of
Gauss sampling point. In eqn (54), the location
% on the interval a to b is given by

Rb‘a‘ﬁ

! 2

1 (55)
where r; is a sampling point.

In evaluating integral for the element stiff-
ness and nodal forces in the present study, the
interval used to from 0 to / and the maximum
integration order of Xis five, by product of the

(53a)

(53b)

displacement shape functions of a beam and
Jacobian J. Since Gaussian numerical inte-
gration which uses n Gauss sampling points is
exact if the integrand is a polynomial of de-
gree of 2n—1 or less, 3 may be adoptable as a
n value,

2.7 Coordinate transformation

In this study, local coordinates are chosen to
represent the individual element at every step.
Each element formulation is then transformed
from local coordinates to a set of convenient
reference coordinates, 1.e, global coordinates.
Therefore, the applied forces, boundary condi-
tions, and the displacements are uniquely
expressed in terms of global coordinates.

Figure 4 shows an arbitrary oriented beam
element and the two coordinate systems, The
nodal displacements in terms of local coordin-
ates and global coordinates are related by

-ﬂl ] o
. A w0 0 00O !
i -4 A0 0 00 }|%
8, 0 01 0 001{8
4, 0 00 A o0 u (56a)
5 000 -uxoll,
8, 0000 014
/(’t
e
e BAYY
“
:"
AN
f\"~ ///%\
’)\\ [
§ » -

v
e

(3%

™

Figure 4 Arbitrarily Oriented Beam Element
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or symbolically where K, is the transformed element stiffness
matrix in terms of global coordinates:

d=Td (56b)
Ka=T"RaI (61)

where 4=cos 8 ; and u=sin 6 , with 8 , being
the angle of orientation of the beam as shown The total stiffness matrix can now be assem-
in Figure 4. Similarly, the external nodal for- bled for the entire elements by using the di-
ces in the terms of local coordinates and global rect stiffness method. When the total stiffness
coordinates are related by matrix has been assembled, the external global

) nodal forces are related to the global nodal dis-
=1 (57) placement. Introducing the boundary condi-

. tions, all unknown variables are evaluated.
where the transposes of and are given by

fr - [fl, ff. ’hl f,: f" ';'z ] (58&) 3- NUMERICAL EXAMPLES
r=Uf £ om £ £, m] (58b) To validate the presented formulation and
demonstrate the importance of imposing ma-
Arranging eqn (40) according to the corre- terial properties properly, examples of cantil-
sponding six nodal degrees of freedom and con- ever beams and frame are considered.

sidering the external nodal forces, (the nodal)

force-displacement relationship is obtained by 3.1 Cantilever Beam with End Forces
p
The large deformation behavior of the cantil-
£ [ . 0 0 , 0 o |a] ever beam with end force shown in Figure 5 is
' eell . K., N . . . L.
£, o K *6SISD Ry 5eS110 0 Ry, 5-6SKSD Ky, 145110 |9, studied. To this end, two loading conditions
ity 0 Ruj+SN0 Rzasuls o R,j:-sN0 K,1-su30 ||8, are considered: case one considered a vertical
S| (R O o R, 0 SO L non-conservative force P, of 8 KN and case
0 R,.-65/5h R3-S0 o R,;+6S/(5D K,:2-S/10 |{v, . .
2 - " i o : two considered a horizontal force P, of 30000
i, 0 R,5+8Nn0 R p-5i30 0 R3-S0 R, ;-2s115 ||8,] ] o ] )
- D KN. This beam is discretized by five equal ele-
(59a) ments, The results are shown in Figures 6, 7

and 8.

or symbolically Figure 6 showns good agreement between

the solutions of the present study and Ref.

i=R.d (59b)
. P
Substituting eqns (56b) and (57) into egn
(59b), and considering the orthogonal property l
of the transformation matrix, we obtain y
% ) » Pn
Z AT
[=K-d (60) g v
le |
| L "

Figure 5 Cantilever Beam with Concentrated End Forces :
L=10 m, h=0.1 m, b=1 m, °E=1.2 KN/ mm?,
°v =0.0.
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Displacements (m)

Figure 6 Horizontal and Vertical Displacements of the Can-
tilever Beam under Load P,
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24000-
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al 180001
o
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]
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<
8 12000~
é ------ Linear analysis
—g—  Present, "E. 100 steps
6000} —e—  Present, ‘£, 100 steps
0 I 1 ! | !

Horizontal Displacement (n)

Figure 7 Horizontal and Vertical Displacements of the Can-
tilever Beam under Load Py,

[13] and shows that the explicit solutions are
very stable and converges rapidly as the num-
ber of increment loading steps increase. the in-
crease in accuracy is due to the fact that the
geometry of the deformed cantilever is updat-
ed more accurately with a larger number of in-
cremental load steps. In Figure 7, the results

Element No. §

\
]
A

—&— 'E, used in the present study

....... ?E , used in the elastic analysis

-t
=

Updated Young's Modulus of Elasticity (KN/mm?)
~

Py = 0 (KN)

N 2
0 | 1 ! LA

2 21 22 23 2.4 2.5

Length of Element No.5 (m)

Figure 8 Updated Young's Modulus of Elasticity in Element
No. 5 of the Cantilever Beam under Load P;,

obtained by considering a) updated material
properties and updated geometry and b) updat-
ed geometry only are compared with that by
linear analysis for the second loading case. Sin-
ce the stiffness of a beam element, which is
considered to have the same material proper-
ties and cross-section area during deformation,
becomes softer and softer when it is gradually
elongated, the axial displacement should be lar-
ger and larger. However, the stiffness of a
beam element subjected to incremental tensile
loadings becomes stiffer and stiffer in real sit-
uation. The results obtained by present formu-
lation show exactly the same way. In Figure 8,
the updated Young’s modulus of elasticity 'E is
evaluated for the element No.5 of the cantil-
ever beam which is subjected to the horizontal
load P,. It shows that the updated Young’s

modulus of elasticity of the element becomes
bigger when the element becomes elongated.

3.2 Cantilever Beam with End Moment
A cantilever beam with two different prop-
erties subjected to a concentrated moment M
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Figure 9 Cantilever Beam with an End Moment :
(a) L=100 in, b=1.0 in, h=0.5 in, "E=1.2x10* {
b/ in% °v=0.0;
(b) L=12 in, b=1.0 in, h=1.0 in, "E=30x 105 /
b/ in? °v=0.0.
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/ —a— Analytical Sol. [15]

-&- Ref. [12]
—a— Present, “E, ) steps

o x| ' ' !
1 0.1 02 03 01 0s

Moment Parameter (1= AL/ 2nELY

Figure 10 Load-Displacement Curves of the Cantilever
Beam (a) under End Moment

12| Ref. [16) N
. / SR
~a- Present, °E, 90 steps / T n\ﬂ\!

1]- - Present,'E, 90 steps

Nonnalized Displacements

Load Factor ( f=AfL/nEl)
Figure 11 Load-Displacement Curves of the Cantilever
Beam (b) under End Moment

at the free end as shown in Figure 9 is con-
sidered. This beam is discretized by twenty
elements for case(a) and twelve elements for
case(b). The results are shown in Figures 10,
11 and 12.

In Figures 10 and 11, the plots of normalized
displacements versus moment parameter and
load factor f for the tip of the beam are show-
n. Results are compared with those of Refs.
(2] and [4] in Figure 10 for case(a), and of
Ref. [7] in Figure 11 for case(b). IN Ref.
[12], ADINA was used with 90 incremental
load steps, 20 beam elements, and no equilib-
rium iterations. In Ref. [16], total Lagrangian
approach with incremental interations is used
to handle geometrically nonlinear three dim-
ensional beam problems, The results from abov-
e two figures show that the predicted response
compares well with the analytical and numeri-
cal solutions respectively given in Refs. [15]
and [16]. Figure 12 shows the deformed shap-
es of the cantilever beam obtained by the pres-
ented method for case(b) for the maximum
load of f=1.8 with 90 incremental load steps

= Present, °E. 90 steps
«-w--. Present,'E, 90 steps

=36 4
! @ ~—~ Present, "E. 190 steps

Present. 'E., 180 sieps

Figure 12 Deformed Shapes of Cantitever Beam (b)
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and f=3.6 with 180 incremental load steps.
From the deformation shapes of the beam, we
may see the differences of the results by °E
and 'E and the capabilities of handling large
displacement and large rotation problems.

3.3 Diamond-Shaped Frame

A diamond-shaped frame composed of four
equal bars and loaded by forces applied at a
pair of diagonally opposite joints as shown in
Figure 13 is analyzed. The two loaded joints
are assumed to be hinged while the two free
joints are assumed to be rigid. A quarter of
the frame is modeled by ten equal elements.
The results are shown in Figures 14 and 15.

In Figures 14 and 15, the plots of normalized
displacements versus load factors under tensile
and compressive loadings are shown. Since the
member strain of the frame is very small,
Young’s modulus of elasticity °E is only con-
sidered. Results are compared with those of
Ref. [21], where analytical solutions with ex-
perimental results for this frame are provided.
From the figures, we see that the solutions

show excellent agreements with theory'?l’,
4. SUMMARY AND CONCLUSIONS

This paper presents an explicit finite el-
ement nonlinear formulation for very large def-
ormations of plane frame structures. The for-
mulation is based on an updated material refer-
ence frame and hence a true stress-strain test
can be directly applied to characterize the
properties of material which is subjected to
very large deformations. The co-rotational ap-
proach, by which the major geometric nonlin-
earities are embodied in the coordinate trans-
formation when element assemblage is formed,
is adopted. The element stiffness matrix is
obtained by superimposing the bending and

2w

T l hinge
o

-

w

T l hinge (free to rotate)

-

<
]

Figure 13 Diamond-Shaped Frame Structure : L=17
b=1.0 in, h=0.0625 in, °E=28.95x 10° /b/ in?,
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Figure 14 Vertical and Horizontal Displacements of the
Frame under Tensile Loading
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geometric stiffness matrices of the linear bar

element is a body attached coordinate.

It has been demonstrated by the examples

that the present formulation has the capability

of handling very large geometric changes. In

addition, the incremental numerical procedure

has shown to be very stable and converges rap-

idly when small load or deformation incre-

ments are used. The importance of using prop-

er material properties in large deformation

analysis has also been demonstrated.
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APPENDIX : Conversion Factors

1in=25.4 mm
1 kip=4.448 KN

1in2=645.2 mm2
1 ksi =6.895 MPa



