• 제목/요약/키워드: Axial Flow Pump

검색결과 126건 처리시간 0.029초

CFD를 활용한 축류형 혈액펌프의 펌프 특성 해석 (Pump performance analysis of Axial Flow Blood Pump using CFD)

  • 최승한;김동욱
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 춘계학술발표논문집
    • /
    • pp.288-290
    • /
    • 2003
  • Artificial heart is divided by pulsation flow type and continuous flow type according to blood circulation pattern. Axial flow blood pump is a kind of continuous flow type artificial heart. Axial flow blood pump would be different pump performance according to impeller's shape and rotating velocity. Pump performance be able to compare by flow rate according to differential pressure and Impeller's rotating velocity. It confirms Impeller model of better efficiency according to compare Pump performance of axial flow blood pump using CFD with actual experiment result.

  • PDF

원심형, 사류형, 축류형 펌프단에서 살펴본 이차유동의 수치적 고찰 (Numerical Investigation of Secondary Flow in 3 Pump Stages: Centrifugal Multistage/Mixed-flow Stage/ Axial-flow Stage)

  • 오종식
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.359-364
    • /
    • 2005
  • Centrifugal pump shows the strongest secondary flow. Wake is formed near pressure surface close to hub at impeller exit for centrifugal pump impeller. Pressure gradient drives secondary flow in the inducer region, while in the remaining region the following sources drive together: > Pressure gradient > Coriolis force Low-momentum fluid near suction surface hub moves toward pressure surface hub in mixed-flow pump impeller. Tip leakage vortex dominate secondary flow in axial-flow pump impeller. Tip leakage vortex dominate secondary flow in axial-flow in axial-flow pump impeller

  • PDF

전산유체해석을 이용한 축류형 혈액펌프의 용혈평가 (Evalution of Hemolysis in Axial Flow Blood Pump with Computational Fluid Dynamics Analysis)

  • 임상필;김동욱
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 춘계학술발표논문집
    • /
    • pp.256-259
    • /
    • 2003
  • Artificial heart is divided pulsation style and nonpulsation style greatly according to flowing of blood. nonpulsation pump is advantage of miniaturization avaliable because it is simple and non-volumic-pump than pulsation pump. Non pulsation pump is derided axial flow style and centrifugal style accordig to rotating style. An axial flow blood pump can be made smaller than a centrifugal blood pump because of its higher specific speed. A hemolysis is an important factor for the development of an axial flow blood pump. It is difficult to identify the areas where hemolysis nun. Evaluation of hemolysis both in in vitro and in vivo require a long time and are costly. Computational fluid dynamics(CFD) analysis enables the engineer to predict hemolysis on a computer. The aims of this study is Computational fluid dynamics in the whole axial flow pump and to verify the accuracy of prediction results of CFD analysis compare with in vitro experimental results.

  • PDF

부유식 수처리시스템용 축류펌프의 성능 및 내부유동 (Performance and Internal Flow Characteristics of an Axial Flow Pump for a Floating Type Water Treatment System)

  • 패트릭마크싱;최영도
    • 한국유체기계학회 논문집
    • /
    • 제17권3호
    • /
    • pp.52-58
    • /
    • 2014
  • The development of efficient systems for water quality improvement for water sources such as lakes, dams and reservoirs has become a necessity to provide not only a cleaner and safer water to the urban society, but also to provide a cleaner and safer environment for the aquatic organisms living in lakes, dams and reservoirs. This study concentrates on the outlet design and internal flow analysis of an axial flow pump used in a floating type water treatment system completely powered by renewable energy source. The treatment system is designed to raise water from depths of about 3~5m up to the water surface where it is naturally mixed with air as it is released back to the reservoir. The outlet of a typical axial flow pump is modified to suit the floating type water mixer. The performance of the axial flow pump is studied by investigating the internal flow of the system. Results show that the change in outlet shape does not alter the performance of the original pump at the maximum efficiency point as long as the cross sectional area of inlet is the same as the outlet. The axial pump for floating type water treatment system has good cavitation performance in the whole flow passage.

축류형 펌프에서 펌프전력을 이용한 유량산정 방범에 관한 연구 (The Study on a Flow-rate Calculation Method by the Pump Power in the Axial Flow Pumps)

  • 이준;서재광;박천태;김영인;윤주현
    • 한국산학기술학회논문지
    • /
    • 제5권3호
    • /
    • pp.227-231
    • /
    • 2004
  • It is the common features of the integral reactors that the main components of the RCS are installed within the reactor vessel, and so there are no any flow pipes connecting the steam generator or the pump whose type is the axial flow. Due to no any flow pipes, it is impossible to measure the differential pressure at the RCS of the integral reactors, and it also makes impossible measure the flow-rate of the reactor coolant. As a alternative method, the method by the measurement of the pump power of the axial flow pump has been introduced in this study. Up to now, we did not found out a precedent which the pump power is used for the flow-rate calculation at normal operation of the commercial nuclear power plants. The objective of the study is to embody the flow-rate calculation method by the measurement of the pump power in an integral reactor. As a result of the study, we could theoretically reason that the capacity-head curve and capacity-shaft power curve around the rated capacity with the high specific-speeded axial flow pumps have each diagonally steep incline but show the similar shape. Also, we could confirm the above theoretical reasoning from the measured result of the pump motor inputs. So, it has been concluded that it is possible to calculate the flow-rate by the measurement of the pump motor inputs.

  • PDF

사판식 액셜피스톤 펌프-레귤레이터계의 선형화해석에 의한 유압제어특성 고찰 (A Study on Hydraulic Control Characteristics of a Swashplate Type Axial Piston Pump-Regulator System by Linearization Analysis)

  • 조승호;김원수
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2535-2542
    • /
    • 2000
  • The regulator system has been modeled and combined to a swashplate type axial piston pump. Linear approximation has been performed for nonlinear coefficient terms of an axial piston pump-regulator model without significantly affecting accuracy. Based on the mathematical model of an axial piston pump-regulator system, a couple of characteristic curves of negative flow control and horsepower control are drawn, which show a good correlation with those of experimental results. So the simplified axial piston pump-regulator model in this paper is expected to be utilized not only for the design and analysis of hydraulic circuit of excavator but also for prevention of engine overload.

축류펌프 안내깃의 성능 향상을 위한 수치해석적 연구 (A Numerical Study on the Performance Improvement of Guide Vanes in an Axial-flow Pump)

  • 박현창;김성;윤준용;최영석
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.58-63
    • /
    • 2012
  • This paper presents a numerical study on the performance improvement of axial-flow pump with guide vanes. Design optimization for guide vanes in an axial-flow pump has been studied through the implementation of a commercial CFD code and DOE (design of experiments). We also discussed how to improve the performance of the axial-flow pump by designing the guide vanes. Geometric design variables were defined by the meridional plane and vane plane development of guide vanes. The effect of hub tip ratio analyzed the meridional plane of guide vanes. The importance of the geometric design variables was analyzed using $2^k$ factorial designs. The objective functions for guide vane geometric variables were defined as the total efficiency and the total head at the design flow rate. From the $2^k$ factorial design results, the important design variables were found and the performance was increased in comparison with the base design model.

전산유체해석을 이용한 축류펌프의 성능예측 (Prediction of Axial Pump Performance Using CFD Analysis)

  • 김민환;김종인;박진석
    • 한국전산유체공학회지
    • /
    • 제6권1호
    • /
    • pp.14-20
    • /
    • 2001
  • The CFD analysis of the three-dimensional turbulent flow in the impeller and diffuser of an axial flow pump was performed. Not only the design point but also the off-design points were computed. The results were compared with available experimental data in terms of head generated. At the design point, the analysis accurately predicted the experimental head value. In the range of the higher flow rates, the results were also in very good agreement with the experimental data, not only in absolute value but also in term of slope. Although experimental data to be compared were not available in the range of the lower flow rates, the results well described the S-shape performance curve of the axial pump characteristic.

  • PDF

CFD해석을 이용한 축류형 혈액펌프의 용혈평가 및 형상개량에 관한 기초연구 (A Study on Shape Optimization and Hemolysis Evaluation of Axial Flow Blood Pump by Using Computational Fluid Dynamics Analysis)

  • 김동욱;임상필
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권1호
    • /
    • pp.57-64
    • /
    • 2004
  • 최근 심장질환에 의한 사망자 수는 놀랄 만큼 빠른 증가세를 보이고 있다. 인공심장은 혈액의 흐름에 따라 크게 박동류형과 무박동류형으로 나뉘며, 무박동류형 펌프는 비용적형으로 박동류형에 비해 소형화가 가능하다는 장점을 가지고 있다. 이러한 무박동류형 혈액펌프는 다시 구동방식에 따라 축류형과 원심형으로 구분되어지며, 그중 축류형 혈액펌프는 같은 무박동류형인 원심형 혈액펌프와 비교하였을 때 훨씬 간단한 구동장치와 제어장치를 가진다. 혈구가 파괴되어 헤모글로빈이 혈구 밖으로 빠져나가는 것을 용혈이라 하며 혈액이 응고하여 혈관을 막게되는 혈전현상은 이러한 용혈이 주된 원인이다. 따라서 혈액펌프가 구동함에 따라 발생하게 되는 용혈의 수치를 낮추는 것은 혈액펌프를 개발하는데 있어서 중요한 조건 중에 하나이다 이러한 용혈을 평가하기 위한 방법으로는 현재 in-vitro실험이 가장 널리 사용되어지고 있으나, 이러한 체외실험을 하기 위해선 상당한 비용과 장기간의 연구기간이 요구되어진다. 이러한 in-vitro실험의 단 전을 보완하기 위해 개발되어진 CFD해석법은, 엔지니어로 하여금 in-vitro실험을 실시하지 않고 용혈이 발생하는 지역과 용혈발생예측치를 추정할 수 있다. 본 연구의 목적은 in-vitro실험의 결과데이터와 CFD해석의 예측결과데이터의 여러 가지 비교를 통해 CFD해석의 정확성을 검증하고, 또한 이러한 정확성이 검증된 CFD해석법을 현재 개발되어지고 있는 축류형 혈액펌프의 개발단계에 적용하기 위함이다.

소형 수직형 축류 펌프를 위한 축방향 자기 부상 모터 (An Axial-type Self-bearing Motor for Small Vertical Axial-flow Pump)

  • 김승종
    • 한국소음진동공학회논문집
    • /
    • 제11권6호
    • /
    • pp.223-232
    • /
    • 2001
  • Aiming at a small axial pump with a levitated rotor, an axial-type self-bearing motor is presented, which has a rotor wish four permanent magnets and two stators with two-pole three-phase windings. In this system, only the axial motion of rotor is actively controlled by two opposite self-bearing motors just like in the case of an axial magnetic bearing, while the other motions are passively stable. For rotation, It follows the theory of a four-pole three-phase synchronous motor. This paper Introduces schemes for design and control of the self-bearing motor and shows some experimental results to Prove the feasibility of application for the axial Pump.

  • PDF