• Title/Summary/Keyword: Autonomous access

Search Result 85, Processing Time 0.036 seconds

Distributed UORA Scheme for Autonomous Train Communication in Congested Environment (자율주행 열차의 혼잡 상황 통신을 위한 분산형 UORA 기법)

  • Ahn, Woojin;Kim, Ronny Yongho
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.542-547
    • /
    • 2019
  • Autonomous train is investigated to increase the capacity of railroad, and the reliability of wireless communication plays a critical role in terms of decreasing the inter-train distance. In this paper, we propose a transmission scheme for autonomous train communication in highly congested environment. The proposed scheme, namely distributed uplink orthogonal frequency division multiple access (OFDMA) random access (UORA), applies the triggered uplink access (TUA) and the UORA, introduced in the sixth generation WLAN standard, IEEE 802.11ax, for communication devices on vehicle and platform in a distributed manner. The simulation results show that the proposed scheme efficiently improves the packet transmission success rate in highly congested channel conditions compared to the conventional enhanced distributed channel access (EDCA) transmission scheme.

A Reinforcement Learning Framework for Autonomous Cell Activation and Customized Energy-Efficient Resource Allocation in C-RANs

  • Sun, Guolin;Boateng, Gordon Owusu;Huang, Hu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3821-3841
    • /
    • 2019
  • Cloud radio access networks (C-RANs) have been regarded in recent times as a promising concept in future 5G technologies where all DSP processors are moved into a central base band unit (BBU) pool in the cloud, and distributed remote radio heads (RRHs) compress and forward received radio signals from mobile users to the BBUs through radio links. In such dynamic environment, automatic decision-making approaches, such as artificial intelligence based deep reinforcement learning (DRL), become imperative in designing new solutions. In this paper, we propose a generic framework of autonomous cell activation and customized physical resource allocation schemes for energy consumption and QoS optimization in wireless networks. We formulate the problem as fractional power control with bandwidth adaptation and full power control and bandwidth allocation models and set up a Q-learning model to satisfy the QoS requirements of users and to achieve low energy consumption with the minimum number of active RRHs under varying traffic demand and network densities. Extensive simulations are conducted to show the effectiveness of our proposed solution compared to existing schemes.

Stability Evaluation of Terminal Group for Inter-Vehicle Communication Network with an Autonomous Relay Access Scheme

  • Chamchoy, Monchai;Kojima, Fumihide;Harada, Hiroshi;Tangtisanon, Prakit;Fujise, Masayuki
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.564-567
    • /
    • 2002
  • This paper evaluates the stability of the terminal group for he inter-vehicle communication (IVC) network with an autonomous relay access scheme. Some stability criterions such as updating rate, terminal group convergence probability and total path average holding time have been conducted by computer simulation. As the results, dynamic moving of the terminal is the serious problem that can degrade the stability of the terminal group and directly affect to overall performance of the IVC network.

  • PDF

A Study on Intelligent Edge Computing Network Technology for Road Danger Context Aware and Notification

  • Oh, Am-Suk
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.3
    • /
    • pp.183-187
    • /
    • 2020
  • The general Wi-Fi network connection structure is that a number of IoT (Internet of Things) sensor nodes are directly connected to one AP (Access Point) node. In this structure, the range of the network that can be established within the specified specifications such as the range of signal strength (RSSI) to which the AP node can connect and the maximum connection capacity is limited. To overcome these limitations, multiple middleware bridge technologies for dynamic scalability and load balancing were studied. However, these network expansion technologies have difficulties in terms of the rules and conditions of AP nodes installed during the initial network deployment phase In this paper, an intelligent edge computing IoT device is developed for constructing an intelligent autonomous cluster edge computing network and applying it to real-time road danger context aware and notification system through an intelligent risk situation recognition algorithm.

Design and Implementation of Smart City Data Marketplace based on oneM2M Standard IoT Platform (oneM2M 표준 IoT 플랫폼 기반 스마트시티 데이터 마켓플레이스 설계 및 구현)

  • Jeong, SeungMyeong;Kim, Seong-yun;Lee, In-Song
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.157-166
    • /
    • 2019
  • oneM2M has been adopted to national and global smart city platforms leveraging its benefits, oneM2M platform assures interoperability to devices and services with standard APIs. Existing access control mechanisms in the standard should be extended to easily distribute smart city data. Compared to the as-is standard, this paper proposes a new access control method with minimum human interventions during data distribution between data sellers and buyers. The proposal has been implemented as the new data marketplace APIs to oneM2M platform and used for data marketplace portal interworking. This also has been demonstrated with smart city PoC service.

The Utilize V2X about to Autonomous Unmanned Forklift System (자율주행이 가능한 무인지게차 시스템에 대한 V2X 활용)

  • Lee, Jae-Ung;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.229-231
    • /
    • 2018
  • As autonomous vehicle technology has been gradually developed, robots that have introduced autonomous navigation systems have been actively involved in areas where there is a lot of livelihoods such as industrial sites and accident sites. For this reason, the unmanned transportation system equipped with the autonomous traveling system is widely used in harmful environments where human access is difficult. In addition, the introduction of the autonomous driving system reduces the collision and casualties that occur in a mobility environment like the industrial field, and it helps the efficient work process. In addition, autonomous driving vehicles can be handled more safely and quickly in a wider area by transmitting the surrounding environment of each vehicle to a server connected to each autonomous driving vehicle and passing it through the main server. In this paper, by utilizing V2X communication for autonomous unmanned forklift system, it can increase industrial workload, reduce loss of life and damage to property through wide area forklifts.

  • PDF

Positioning Accuracy on Robot Self-localization by Real-time Indoor Positioning System with SS Ultrasonic Waves

  • Suzuki, Akimasa;Kumakura, Ken;Tomizuka, Daisuke;Hagiwara, Yoshinobu;Kim, Youngbok;Choi, Yongwoon
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.100-111
    • /
    • 2013
  • Indoor real-time positioning for multiple targets is required to realize human-robot symbiosis. This study firstly presents positioning accuracy on an autonomous mobile robot controlled by 3-D coordinates that is obtained by a real-time indoor positioning system with spread spectrum (SS) ultrasonic signals communicated by code-division multiple access. Although many positioning systems have been investigated, the positioning system with the SS ultrasonic signals can measure identified multiple 3-D positions in every 70 ms with noise tolerance and error within 100 mm. This system is also robust to occlusion and environmental changes. However, thus far, the positioning errors in an autonomous mobile robot, controlled by these systems using the SS ultrasonic signals, have not been evaluated as an experimental study. Therefore, a positioning experiment for trajectory control is conducted using an autonomous mobile robot and our positioning system. The effectiveness of this positioning method for robot self-localization is shown, from this experiment, because the average control error between the target position and the robot's position at 29 mm is obtained.

Reliable Autonomous Reconnaissance System for a Tracked Robot in Multi-floor Indoor Environments with Stairs (다층 실내 환경에서 계단 극복이 가능한 궤도형 로봇의 신뢰성 있는 자율 주행 정찰 시스템)

  • Juhyeong Roh;Boseong Kim;Dokyeong Kim;Jihyeok Kim;D. Hyunchul Shim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.149-158
    • /
    • 2024
  • This paper presents a robust autonomous navigation and reconnaissance system for tracked robots, designed to handle complex multi-floor indoor environments with stairs. We introduce a localization algorithm that adjusts scan matching parameters to robustly estimate positions and create maps in environments with scarce features, such as narrow rooms and staircases. Our system also features a path planning algorithm that calculates distance costs from surrounding obstacles, integrated with a specialized PID controller tuned to the robot's differential kinematics for collision-free navigation in confined spaces. The perception module leverages multi-image fusion and camera-LiDAR fusion to accurately detect and map the 3D positions of objects around the robot in real time. Through practical tests in real settings, we have verified that our system performs reliably. Based on this reliability, we expect that our research team's autonomous reconnaissance system will be practically utilized in actual disaster situations and environments that are difficult for humans to access, thereby making a significant contribution.

An Automatic AP Connections Scheme using iBeacon (iBeacon을 이용한 AP 자동접속 방안)

  • Nam, ChoonSung;Shin, DongRyeol
    • Journal of Internet Computing and Services
    • /
    • v.18 no.2
    • /
    • pp.1-11
    • /
    • 2017
  • There are two kinds of wireless network access to a certain place by using smart devices - 1) open (anonymous) - access and 2) user-authorized access. The open-access is a non-authorization connection method which does not need to require Smart device's user authorized information. It means open-access use only user's SSID (Service Set Identifier) information to access the wireless AP devices following public wireless network standard. This access mechanism is not suitable to use all of public wireless networks because users have to get all wireless network information around them. As a result, huge data for smart devices should be one of the most critical overload problems for them. Secondly, the user-authorized access method uses wireless network information (SSID and password) chosen by the users. So, the users have to remember and use the network access information data manually whenever accessing the network. Like open-access, this access method also has the operational and inconvenient problem for the users - manually inputting access information whenever connecting to the network. To overcome this problem in both schemes, we propose two improved wireless network access methods: 1) the implementation of automatic AP connection mechanism using user-authorization and iBeacon messages, and 2) SSID registration form for public wireless networks.

Reliability Verification of Secured V2X Communication for Cooperative Automated Driving (자율협력주행을 위한 V2X 보안통신의 신뢰성 검증)

  • Jung, Han-gyun;Lim, Ki-taeg;Shin, Dae-kyo;Yoon, Sang-hun;Jin, Seong-keun;Jang, Soo-hyun;Kwak, Jae-min
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.391-399
    • /
    • 2018
  • V2X communication is a technology in which a vehicle exchanges information with various entities such as other vehicles, infrastructure, networks, pedestrians, etc. through a wired or wireless network. Recently, V2X communication technology has been steadily developed and recently it has played an important role in autonomous cooperation driving technology combined with autonomous vehicle technology. Autonomous vehicles can utilize the external information received via V2X communication to extend the recognition range of existing sensors and to support more safe and natural autonomous driving. In order to operate these autonomous cooperative vehicles on public roads, the security and reliability of autonomous V2X communication should be verified in advance. In this paper, we present test scenarios and test procedures of secure V2X communication for cooperative automated driving and present verification results.