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Abstract 
 

Cloud radio access networks (C-RANs) have been regarded in recent times as a promising 
concept in future 5G technologies where all DSP processors are moved into a central base 
band unit (BBU) pool in the cloud, and distributed remote radio heads (RRHs) compress and 
forward received radio signals from mobile users to the BBUs through radio links. In such 
dynamic environment, automatic decision-making approaches, such as artificial intelligence 
based deep reinforcement learning (DRL), become imperative in designing new solutions. In 
this paper, we propose a generic framework of autonomous cell activation and customized 
physical resource allocation schemes for energy consumption and QoS optimization in 
wireless networks. We formulate the problem as fractional power control with bandwidth 
adaptation and full power control and bandwidth allocation models and set up a Q-learning 
model to satisfy the QoS requirements of users and to achieve low energy consumption with 
the minimum number of active RRHs under varying traffic demand and network densities. 
Extensive simulations are conducted to show the effectiveness of our proposed solution 
compared to existing schemes. 
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1. Introduction 

Research on the fifth-generation (5G) mobile cellular communication technology indicates 
that the traffic density in crowded cities or hotspot areas will reach 20~Tbps/Km2 in the near 
future. It is expected that by 2020, mobile internet will need to be delivering 1GB of 
personalized data per user per day. Furthermore, traffic by 2030 is predicted to be up to 
10,000 times greater than in 2010 and 100 Mbps end-user services will have to be supported 
[1]. To be able to support such demand, future mobile cellular networks are expected to be 
deployed in a very dense and multi-layered way. Ultra-dense small cell network (UDN) is 
considered as one of the most promising methods to meet the traffic volume requirement of 
5G. The realization of this is simply done by the dense deployment of small cells in the 
hotspots, where immense traffic is generated [1]. However, this triggers a proportional 
consumption on energy. From the perspective of network operators, the increasing energy 
costs cannot sustain future network operations. From the environmental point of view, 
“greenness” can be more meaningful with a comprehensive evaluation that includes both 
energy savings and network performance, which is the basis for energy efficiency (EE) 
metrics. 

Cloud radio access networks(C-RANs) have been proposed and regarded as a promising 
concept in the information and communications technology (ICT) area, where base-band 
units (BBUs) and radios are separated [2]. All DSP processors are moved into a central BBU 
pool in the cloud, and the distributed remote radio heads (RRHs) take the responsibility of 
compressing and forwarding the received radio signals from mobile users to BBUs through 
radio links. This will reduce the overall capital cost and operational cost, and make large-
scale high-density network deployments possible. Especially, this centralized architecture 
makes it easy to collect and analyze statistics data of runtime system, as it motivates us to 
seek autonomous schemes for network energy management.  

Recently, reinforcement learning (RL) has been advocated as a viable technology to 
enhance resource utilization. RL is a form of machine learning technique where a learning 
agent does not have a prior knowledge of the environment. To obtain low energy 
consumption on the RRHs and satisfy the QoS requirements of users under varying traffic 
demand and network densities, RL techniques are best to switch the RRHs on or off at 
defined time steps. While traditional solutions to optimizing networks such as greedy linear 
programming and greedy search satisfy instantaneous requirements of the system, RL agents 
survey the entire network taking into account every possible state [3]. For dynamic systems 
where conditions change periodically, the agent selects the most appropriate policy for 
allocating resource in real time. In the context of C-RAN architecture, the agent can be 
trained through each learning stage and then updates the trained data to determine the state of 
each RRH in each decision epoch to implement continuous control. This paper develops a 
framework for energy-efficiency where RL techniques are used to determine the power 
consumption states (sleep and active) for each RRH. The idea is to develop an autonomous 
cell activation scheme and a customized physical resource allocation scheme to achieve 
optimal network structure to reduce power consumption. The proposed framework can be 
realized in two steps: Firstly, we identify the active and inactive RRHs using a Q-learning 
based algorithm. Secondly, we set up a flexible resource allocation module based on the 
active RRH set by optimizing power and bandwidth allocation and control. 

In other related works [4], [5], where power consumption is optimized over current 
timeslot or time frame, we present a cell activation RL-based framework which makes a 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, no. 8, August 2019                         3823 

sequence of resource allocation decisions to minimize total energy consumption for the 
whole operational period. To efficiently solve this problem, we first use a Q-learning method 
to solve the cell activation problem and formulate the resource allocation problem for users 
as a convex optimization problem. Our motivation is to achieve the balance between EE and 
QoS to satisfy infrastructure providers (InPs) and mobile users via flexible power and 
bandwidth control or allocation, decoupled from cell activation techniques in a dense C-
RAN system. In this paper, our main contributions can be summarized as: 

• We propose an autonomous energy management framework using cell activation 
techniques for the customized network. We design a Q-learning model with a 
reduced size of state space set considering varying resource demand and user 
population.  

• In this framework, we formulate the EE-QoS optimization as two models, fractional 
power control with bandwidth adaption and full power and bandwidth allocation. 

• Considering physical resource allocation for a customized network, we optimize 
power and bandwidth jointly. We formulate the problem as a convex optimization 
with the aim of satisfying QoS requirements of user equipment (UEs) with the 
minimum number of active RRHs. 

The remainder of this paper is organized as follows. In Section II, we present related 
works. Section III presents the system model in terms of network model, traffic model, 
energy model and utility model. Section IV provides the problem formulation and our 
proposed RL-based autonomous energy management framework. Simulation results and 
analysis are discussed in Section V. We conclude this work in section VI. 

2. Related Work 
The EE and QoS performance metric has become a design goal as the discussion on 

energy consumption continues to grow across every field. It has become a requirement for 
network engineers and scientists to develop systems that manage energy efficiently. Authors 
in [6] studied energy efficient wireless communications and identified energy-efficiency 
resource allocation as one of the key challenges of 5G. In C-RAN, baseband and processing 
functionality of a network are virtualized and shared among physical units. This architecture 
improves energy efficiency in the sense that the RRHs have less functions. In [7], authors 
considered RRH selection and power minimization jointly as the resource allocation problem 
in group sparse beamforming for green Cloud-RAN. Authors extended their work in [8] to 
reduce the computational complexity in selecting RRH using lagrangian dual methods. In [9], 
the effect of optimizing data-sharing and the compression on energy efficiency were studied 
in C-RAN. By minimizing the total power consumption in the network, they proved that a 
higher energy efficiency depends on the user target rate.  

Intuitively, high density of active small cell base stations (sc-BSs) results in severe 
interference and also inefficient energy consumption. The inter-cell or inter-tier interference 
mitigation is the key to improve EE performances. Therefore, Luo et al. in [4] proposed a 
joint downlink and uplink mobile users access point (MU-AP) association and beamforming 
design for interference management and energy minimization in C-RAN. Authors in [10] 
also proposed an enhanced soft fractional frequency reuse scheme. In this scheme, they 
formulated a joint optimization problem with the resource block assignment and power 
allocation for interference mitigation in order to maximize EE performances in 
heterogeneous C-RAN. The joint rate allocation, routing, scheduling, power control and 
channel assignment problem was investigated in [5] with the aim of maximizing throughput 
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and achieving fairness of users. Joint optimization by cell activation or cell coverage 
adjustment, user association, and sub-carrier allocation has been investigated in [11] [12]. 
This was done under the constraints of maintaining an average sum rate and rate fairness. 
The authors argued that energy consumption was dependent on both the spatio-temporal 
variations of traffic demands and the internal hardware components of sc-BS. 

Several studies in recent times also suggested a scheme, known as multiple base station 
scheduling (MBSS) [13]. Due to the computational complexity in MBSS, authors in [14] 
proposed a low complexity flexible flow scheduling algorithm to compensate for the energy 
consumption caused by increasing dimension of ultra-dense nodes. Trade-offs between QoS 
and EE for users with different traffics was presented in [15]. In [16], the authors studied the 
user association problem aiming at maximizing the network energy efficiency for the 
downlink of heterogeneous networks (HetNets). The goal of minimizing the system energy 
consumption and also maximizing the ratio of the peak-signal-to-noise-ratio was considered 
in [17] but only for QoE-aware energy efficiency (QEE) and QoE-aware spectral efficiency 
(QSE). 

Reinforcement learning can be widely utilized in many applications with different 
optimization objectives, such as resource allocation in data centers, residential smart grid, 
embedded system power management and autonomous control [18]. The work in [18] 
developed a framework for solving the overall resource allocation and power management 
problem in cloud computing systems using deep reinforcement learning. Shams et al [19] 
proposed a Q-learning-based algorithm to achieve both energy efficiency and overall data 
rate. Xu et al proposed a framework which uses reinforcement learning to achieve optimal 
solution for power-efficient resource allocation for beamforming problem [20]. 

To the best of our knowledge, there are lack of solutions to maximize the EE 
performance in C-RANs where power and bandwidth are optimized jointly. The authors in 
[21] investigated energy-efficient power allocation and wireless backhaul bandwidth 
allocation in heterogeneous small cells. They formulated the problem as a non-convex non-
linear programming problem and decomposed it into two sub-problems. Then, they proposed 
a sub-optimal low-complexity algorithm to solve the bandwidth allocation problem and a 
near optimal iterative resource allocation algorithm. However, these algorithms are still 
model-based method, which cannot autonomously produce optimal solutions in sequential 
time steps. In this paper, based on the traffic load prediction results and the current 
information, the power manager adopts the model-free RL technique to adaptively determine 
the suitable action for turning on/off of the RRHs and simultaneously reduce the 
power/energy consumption and improve QoS satisfaction. 

3. System Model 

The proposed autonomous cell activation and customized physical resource allocation 
schemes for energy consumption and QoS optimization framework is made up of RRHs, 
BBUs and UEs. The UEs are connected to the RRHs based on the execution of cell 
activation by the BBU pool. In this section, we present the network model, traffic model, 
energy model, and utility model. 

3.1 Network model 
The network model in the paper is based on the C-RAN architecture. In C-RAN, the 

BBUs are combined into a single resource pool, i.e BBU pool and shared among the RRHs 
[22]. All functions of the RAN are partially or completely integrated into the BBU pool in 
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the cloud. RRHs at different locations can access the functions from the virtual BBU pool. 
Let 𝒥 = {1,2, … . , 𝐽} be a set of infrastructure nodes called RRHs. For each node  𝑗 ∈ 𝒥 , a set 
of UEs are connected to them. We represent a set of UEs 𝔗 = {1,2, … . , 𝐼} as the mobile UEs 
connected to the RRHs. At each time interval, it is assumed that user 𝑖 ∈ 𝔗 is connected to a 
RRH 𝑗. The spectrum bandwidth of RRH 𝑗 is 𝑊𝑗 Hz and the maximum transmit power of 
RRH 𝑗 is 𝑃𝑗𝑡𝑟𝑎𝑛𝑠 watts. We denote the fraction of resource allocated to UE 𝑖 from RRH 𝑗 as 
𝑥𝑖𝑗  ∈  [0, 1], where 𝑥𝑖𝑗  =  0 means that UE 𝑖 is not associated with RRH 𝑗  and 𝑥𝑖𝑗  ≠  0 
means that UE 𝑖 from RRH 𝑗 is allocated a bandwidth proportion of 𝑥𝑖𝑗. 

In our system model, the path-loss is calculated as follows: 
𝑃𝑎𝑡ℎ𝐿𝑜𝑠𝑠 = 20 ∗ 𝑙𝑜𝑔(𝐹) + 20 ∗ 𝑙𝑜𝑔(𝐷) + 32.4,                                          (1) 

where 𝐹  is the frequency band and 𝐷  is the distance between a UE and a RRH. The 
shadowing small-scale fading is assumed as a Gaussian random variable with zero mean and 
standard deviation 𝛿 equal to 8dB [23]. 

   For the resource allocation, the signal-to-interference-plus-noise-ratio (SINR) 
experienced by each UE 𝑖 associated with a RRH 𝑗 is modeled as;  

 𝜒𝑖𝑗 = 𝘨𝑖𝑗𝑃𝑖𝑗𝑡𝑟𝑎𝑛𝑠/(∑ 𝘨𝑖𝑗𝑃𝑖𝑘𝑡𝑟𝑎𝑛𝑠 + 𝜎𝑘,𝑘≠𝑗 ),                                  (2)  

where 𝑔𝑖𝑗  is large-scale channel gain resulting from propagation loss and shadowing effects. 
𝜎 is the power spectrum density of additive white Gaussian noise. 𝑃𝑖𝑗𝑡𝑟𝑎𝑛𝑠 is the received 
signal power for UE 𝑖 from RRH 𝑗. Next, we use the Shannon capacity formula to calculate 
the spectrum efficiency of UE 𝑖 with RRH 𝑗 as: 

 𝑏𝑖𝑗 = 𝑙𝑜𝑔2(1 + 𝜒𝑖𝑗),                                                               (3) 

where 𝜒𝑖𝑗 is the SINR of UE 𝑖  from RRH 𝑗. 

With the fraction of the bandwidth resource allocated to UE 𝑖 from RRH 𝑗 being 𝑥𝑖𝑗 and 
its transmission rate denoted by ℜ𝑖𝑗, we have ℜ𝑖𝑗 = 𝑊𝑗𝑥𝑖𝑗𝑏𝑖𝑗. Based on equation (3), the 
transmission rate of UE 𝑖 obtained from RRH 𝑗 can be written as: 

                        ℜ𝑖𝑗 = 𝑊𝑗𝑥𝑖𝑗 log2(1 + 𝜒𝑖𝑗),                                                       (4) 

Since it is possible for a UE to associate with any RRH, the effective transmission rate ℜ𝑖𝑗  of 
UE 𝑖 can be written as follow: 

ℜ𝑖 = ∑ �𝑥𝑖𝑗�0𝑗𝜖𝐽 ℜ𝑖𝑗,                                                                 (5) 

where �𝑥𝑖𝑗�0 denotes an association indicator between UE 𝑖 and RRH 𝑗. If �𝑥𝑖𝑗�0 = 0, there is 
no association between the UE and RRH; otherwise, �𝑥𝑖𝑗�0 = 1.  

3.2. Traffic model 
In our scenario, we monitor the spatial-time traffic distribution in the network over a 24-

hour period. The number of active users and the traffic demands vary over this period. Using 
this model greatly increases the complexity of the traffic mode on the network. A traffic 
profile is based on the on-site measurements from the EU FP EARTH project [14]. An ideal 
traffic profile is configured based on the trapezoidal traffic pattern, which is a simple 
example of daily traffic pattern [14]. For a trapezoidal curve with a maximum value of one 
and different slopes, the traffic function is defined by the angular coefficient 𝑣. 
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𝑓(𝑡) =

⎩
⎨

⎧   1 − 𝑣𝑡; �0 ≤ 𝑡 ≤ 1
𝑣
�

0;
1 + 𝑣(𝑡 − 𝑇); �𝑇 − 1

𝑣
≤ 𝑡 ≤ 𝑇�

�                                        (6) 

where 𝑇 represents a 24-hour scan period, 𝑣 represents the slope and 𝑓(𝑡) is a normalized 
value between 0 and 1 as shown in Figure 2. If 𝑣 is equal to 1/10, then we move the 𝑓(𝑡) to 
𝑓(𝑡) + 12, which is close to the real scenario. If the slope 𝑣 is equal to 1/8, the traffic profile 
will be changed. Since the traffic changing trend is close to real situation when 𝑣 is equal to 
1/10, we will use the traffic function in that 𝑣 as equal to 1/10. 

3.3. Energy model 
We define two power consumption states, sleep and active for each RRH. The active state 

combines the sum of power consumption of the transmit power and RRH power. Power 
consumption of the RRH at the sleep state is negligible. Therefore, we define the total power 
model for each RRH as follows: 

  𝑃𝑗
𝑡𝑜𝑡𝑎𝑙 = �

𝑃𝑗𝑎𝑐𝑡𝑖𝑣𝑒 + 𝑃𝑗𝑡𝑟𝑎𝑛𝑠           𝑗𝜖𝑗𝐴
𝑃𝑗
𝑠𝑙𝑒𝑒𝑝                           𝑗𝜖𝑗𝑆

�
 ,                                           (7) 

where 𝑃𝑗𝑎𝑐𝑡𝑖𝑣𝑒 denotes the essential power consumption of the RRH 𝑗 in the active state, 
which is necessary in order to maintain the basic operation of the RRH and 𝑃𝑗𝑡𝑟𝑎𝑛𝑠 is the 
used transmit power of RRH which is to ensure data transmission of user equipment (UE). If 
the RRH is not selected for transmission, it enters sleep mode. 𝒥𝐴 ⊆ 𝒥  and 𝒥𝑆 ⊆ 𝒥  denote 
the sets of active and sleep RRHs respectively. The total number of RRHs in the network is 
the sum of active set of RRHs and the sleep set of RRHs, i.e. 𝒥𝐴 ∪ 𝒥𝑆 = 𝒥. 

Given a time 𝑡 =  {1,2,3 … ,𝑇}, a set of active RRHs 𝒥𝐴 and a set of sleep RRHs 𝒥𝑆, the 
total energy consumption of RRHs in the entire period can be expressed as:

   
 

𝐸 = ∑ �∑ 𝑃𝑗𝑎𝑐𝑡𝑖𝑣𝑒𝑗𝜖𝒥𝐴 +∑ 𝑃𝑗𝑡𝑟𝑎𝑛𝑠𝑗𝜖𝒥𝐴 +∑ 𝑃𝑗
𝑠𝑙𝑒𝑒𝑝

𝑗𝜖𝒥𝑆 �𝑇
𝑡=1

                      (8) 

In the C-RAN architecture, inactive RRHs are put to sleep in order to conserve energy. 
Our proposed Q-learning based cell activation scheme provides flexibility for managing 
energy consumption. The C-RAN control unit dynamically optimizes the total expected and 
cumulative energy during the entire operational period instead of the instantaneous energy 
consumption in a decision period. 
3.4. Utility model 

Based on the objective of the proposed scheme, we can know the precondition of saving 
energy consumption of network is to ensure that we satisfy the QoS requirement of UEs. In 
order to offer better QoS to UEs, the required transmission rate should be guaranteed. We 
consider measuring the satisfaction of a UE 𝑖  with a sigmoid function, which can be 
expressed in [24] as:  

ξ(ℜ𝑖) = 1

1+𝑒−𝜏(ℜ𝑖−ℜ𝑖
𝑚𝑖𝑛)

,                                                         (9) 

where ℜ𝑖
𝑚𝑖𝑛 is the minimum rate demand required by the UE 𝑖 and 𝜏 is a constant deciding 

the steepness of the satisfactory curve. In addition, ℜ𝑖  is the real transmission rate for UE 𝑖, 
which is determined by the network infrastructure, transmission power, noise, interference 
and many other related factors. It is easy to verify that: 1) 𝜉�ℜ𝑖

𝑚𝑖𝑛� is a monotonic increasing 
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function with respect to ℜ𝑖, because individual UEs will feel more satisfied if they receive 
higher throughput above their minimum demand and vice versa; 2) 𝜉�ℜ𝑖

𝑚𝑖𝑛� of each UE 𝑖 is 
scaled between 0 and 1, i.e. 𝜉�ℜ𝑖

𝑚𝑖𝑛� ∈ (0, 1). 

The analysis shows it results in a trivial solution using linear utility function (5) for 
throughput maximization as in [25], in which each RRH serves only its strongest user. While 
throughput is optimal, this is not a satisfactory solution for many reasons. Instead, we seek a 
utility function which achieves load balancing and user fairness naturally. A logarithmic 
function, in particular, is a very common choice of utility function. The resulting objective 
function with logarithmic utility is defined as; 

𝑈𝑖(ℜ𝑖) = log (ℜ𝑖),                                                              (10) 

4. Problem Formulation 
The framework of our proposed energy consumption optimization system has three 

hierarchies as shown in Fig. 1. Firstly, user association between UEs and RRHs are 
established through user admission control. Then, the RL agent executes cell activation using 
the Q-learning technique to select the active RRH set. Resource allocation module uses the 
active RRH set to execute radio resource allocation based on the needed active RRH set for 
satisfying the QoS requirement of UEs. The result of radio resource allocation serves as the 
reward that is fed back into the Q-Learning-based cell activation module. The RL agent 
dynamically monitors the change in user population, distribution, QoS demand and resource 
utilization of UEs caused by the dynamics in the UEs’ number and their location. Once 
learning is completed, the agent executes cell activation autonomously as the action of the Q-
learning algorithm for minimizing energy consumption. The resource allocation module also 
performs energy management and QoS satisfaction based on the set of active RRHs obtained 
from cell activation. The admission control and association result in association between 
UEs and RRHs. We demonstrate autonomous cell activation and customized resource 
allocation modules of the system framework one by one. 

 
Fig. 1. System framework 
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4.1. Autonomous cell activation 
In this section, we present the Q-learning-based autonomous cell activation framework, 

which minimizes the number of active RRHs to achieve low energy consumption while 
ensuring that the demand of each UE can be satisfied by the set of active RRHs. Unlike most 
of the previous works that presented algorithms optimizing a certain objective (such as 
power consumption) for the current timeslot (or time frame), our proposed Q-learning-based 
framework makes a sequence of cell activation decisions to minimize total energy 
consumption while satisfying QoS demand of UEs for the whole operational period. In our 
framework, the RL agent can turn off some RRHs in order to minimize energy consumption 
if the available UEs can be satisfied by few number of RRHs. It can also turn on some RRHs 
if the current active RRHs cannot satisfy the requirements of some UEs. These on-off 
switching decisions are made by the RL learning agent deployed in the BBU cloud. 
Q-learning: Reinforcement learning technique is a form of machine learning which does not 
need much labeled data to make decisions. There are a number of reinforcement learning 
technique variations such as Q-learning, deep Q-learning and double Q-learning. One of the 
most well-known and generally applicable implementations of reinforcement learning is Q-
learning [26]. Q-learning is a model-free reinforcement learning algorithm whereby an agent 
interacts solely with an environment, without requiring additional information about the 
environment except for awareness of the environment states, possible (enabled) actions from 
its current state, and the obtained rewards after performing an action. 

In Q-learning, we define a matrix-like Q-table, which has the form 𝑄 ∶  𝑆 ×  𝐴 → 𝑅 
where 𝑆  is the set of possible states in the environment, 𝐴 is the set of actions that are 
possible for those states and 𝑅 is the reward obtained after performing the action. The Q-
table 𝑄(𝑠,𝑎)  with 𝑠 ∈ 𝑆  and 𝑎 ∈ 𝐴  maps state-action pairs to the maximum discounted 
future reward 𝑅′ when performing action 𝑎 from state 𝑠. The Q-value which can be looked 
up in the Q-table can be expressed as follows: 

𝑄(𝑠′, 𝑎′) = max 𝑅′                                                           (11) 
where 𝑎′ is the action of next state 𝑠′ and 𝑅′ is the discounted future reward.  

The letter 𝑄 is derived from the word “quality,” as the Q-function represents the quality 
score for performing an action in a certain state. The ideal policy 𝜋𝑖𝑑𝑒𝑎𝑙  for an agent to 
follow to maximize the future (discounted) reward from state 𝑠  is to always choose the 
action with the highest Q-value as follows: 

                            
 𝜋𝑖𝑑𝑒𝑎𝑙(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝜖𝐴𝑠 𝑄(𝑠,𝑎)                                            (12) 

where 𝐴𝑠 is the set of actions that are enabled in state 𝑠. 
The idea of Q-learning is that, we iteratively approximate the Q-table. Consider a single 

transition performed by a reinforcement learning agent: (𝑠,𝑎, 𝑟, 𝑠′)  where 𝑠  denotes the 
previous state of the agent, 𝑎 is the chosen action by the agent when being in state 𝑠, 𝑟 is the 
obtained reward for performing action 𝑎 in state 𝑠, and 𝑠′ represents the resulting state the 
environment is in after the agent performed action 𝑎. We can express the Q-value of state-
action pair (𝑠,𝑎) in terms of the next state 𝑠′ using the Bellman equation as: 

  𝑄(𝑠,𝑎) = 𝑟 + γmax𝑎′𝜖𝐴𝑠′ 𝑄(𝑠′,𝑎′)                                       (13) 

We begin to formulate the Q-learning-based cell activation problem of our wireless 
network scenario by defining network states, actions and reward in the context of the generic 
semi-markov decision process (SMDP) framework [27]. 
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State(s): As mentioned above, the purpose of Q-learning is to minimize the number of active 
RRHs while satisfying the QoS requirements of the UEs. Based on this, the state space needs 
to reflect the on-off states of RRHs and their bandwidth occupancy. Therefore, we define the 
state space of the agent to include the on-off state of RRHs and the proportion of bandwidth 
resources occupied by the current RRHs. Each RRH has two states, the active state and the 
sleep state. The two states for any RRH 𝑗 can be expressed as 𝑀𝑗 ∈ {0, 1}. 𝑀𝑗 = 0 indicates 
that RRH 𝑗 is in the sleep state while 𝑀𝑗 = 1 indicates that RRH 𝑗 is in the active state. We 
use 𝜃 to represent the proportion of total system bandwidth resources occupied by all of the 
UEs on all of the RRHs. Since 𝜃 is a continuous value, it leads to infinite states. Therefore, 
in order to reduce the size of state spaces in Q-table, the range of 𝜃 from zero to one is 
partitioned into eight non-overlapped subzones averagely uniformly. In summary, the state 
space for wireless network scenario can be expressed as 𝑠= [𝑀1,𝑀2 . .𝑀𝐽 ,𝜃1,𝜃2. .𝜃𝐽] with 
𝑜(2𝐽) discrete combinational states.  
Action(a): In this paper, the goal of Q-learning-based cell activation is to minimize the 
number of active RRHs by switching off some RRHs when a few number of RRHs can 
satisfy the demand of the UEs. The action to be performed is the switching decision that is 
made by the agent on the RRHs. That is, the agent makes a corresponding switching action 
of RRHs according to the current state. Each RRH corresponds to two actions, switching on 
or off. For any RRH 𝑗, the two actions can be represented as 𝑁𝑗 ∈ {0, 1}, 𝑁𝑗 =  0 indicates 
switching off RRH 𝑗 to turn it to sleep, and 𝑁𝑗 = 1 indicates switching on RRH 𝑗 to turn it to 
active. The action space can be expressed as 𝑎 = [𝑁1,𝑁2, . .𝑁𝐽]. 

Reward(r): Reward is the feedback received from the environment after performing an 
action in a certain state. Therefore, the reward needs to reflect the purpose of the Q-learning 
algorithm; in our case, the satisfaction of the user's service quality and the energy 
consumption minimization of the wireless network. Since the optimal strategy of Q-learning 
is to find the action with the largest value in the Q-table for each state, satisfaction of user 
QoS and energy consumption minimization of the wireless network after the action is 
performed gives the agent the largest Q-value. We define the reward as follows: 

      
𝑅(𝑠,𝑎) = 1

𝐸
+𝜔 ∗ ξ(∙)                                                          (14) 

where ξ(∙)ϵ[0,1] is an indicator to show the satisfaction of UEs, with the utility function 
defined in (9) and 𝜔 > 0. After obtaining the set of active RRHs through Q-learning-based 
cell activation, we focus on how to allocate power and bandwidth to the UEs through 
customized resource allocation module in the next sub-section.  

4.2. Customized resource allocation  
In the resource allocation module, we set up different objective functions for different 

resource allocation schemes. In this paper, we propose a scheme where the QoS 
requirements of the UEs are satisfied with a limited amount of resource available. It is 
assumed that, the proportion of bandwidth occupied by UEs is equal to the transmit power 
consumption. On the other hand, a scheme to maximize the throughput of UEs by fully 
utilizing the available resource is considered. 
4.2.1. Fractional power control with bandwidth allocation 

In this resource allocation scheme, we assume that the value of transmit power of unit 
bandwidth is the equal for all RRHs. The objective of this scheme is to minimize the usage 
of power and bandwidth while ensuring QoS satisfaction of UEs. Based on this, we define 
the objective function as the sum of the occupied resource in the whole system 𝐵 as follows: 
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      𝑚𝑖𝑛 𝐵 =∑ ∑ 𝑥𝑖𝑗
𝐽
𝑗=1

𝐼
𝑖=1                                                                 (15)  

such that; 

                 𝑥𝑖𝑗𝜖[0,1],      ∀ 𝑖𝜖{1,2, … , 𝐼},∀ 𝑗𝜖{1,2, … , 𝐽}                                              (16) 

                       ∑ �𝑥𝑖𝑗�0 = 1,𝐽
𝑗=1    ∀ 𝑖𝜖{1,2, … , 𝐼}                                                      (17) 

                      ∑ 𝑥𝑖𝑗 ≤ 1 𝐼
𝑖=1 , ∀ 𝑗𝜖{1,2, … , 𝐽}                                                         (18) 

             
∑ 𝑥𝑖𝑗 ∗ 𝑤 ∗ log2 (1 + 𝜒𝑖𝑗) ≥ 𝑑𝑖 ,
𝐽
𝑗=1    ∀𝑖𝜖{1,2, … , 𝐼}                                    (19)  

where 𝑥𝑖𝑗  is the proportion of bandwidth occupied by UE 𝑖 from RRH 𝑗 and 𝑑𝑖 is the demand 
of UE 𝑖 . We assume all UEs have equal demand. Constraint (16) states that, the fraction of 
resource allocated to UEs ranges from 0 to 1.Constraint (17) states that a UE can only 
associate with one RRH simultaneously. This is because; we assume each UE has only one 
interface at a time. |𝑥𝑖𝑗|0  denotes an association indicator between UE 𝑖  and RRH 𝑗 . If 
|𝑥𝑖𝑗|0 = 0 , there is no association between the UE and RRH; otherwise, |𝑥𝑖𝑗|0 = 1 . 
Constraint (18) means the proportion of bandwidth occupied by the UEs should not exceed 
one. This is because all occupied bandwidth of UEs on each RRH should not be more than 
the total bandwidth of the associated RRH. Constraint (19) indicates that bandwidth resource 
occupied by UE should be greater than its QoS requirement. This optimization problem is a 
mixed non-linear integer programming problem and can be solved efficiently using existing 
MATLAB solver YALMIP [28]. In this solver, the mixed integer linear programming (MILP) 
is used and appropriate for solving this resource allocation optimization problem. 
 
4.2.2. Full power and bandwidth allocation 

In this resource allocation scheme, our objective is to maximize the throughput of the 
network system. Instead of fractional power control with bandwidth adaptation, the network 
would allocate as much power and bandwidth as possible to UEs to maximize throughput 
while observing user fairness. We define the objective function of this scheme as follows: 

                          𝑚𝑎𝑥    𝑇 =∑ 𝑈(ℜ𝑖)𝐼
𝑖=1                                                               (20) 

                       ∑ 𝑃𝑖𝑗𝑡𝑟𝑎𝑛𝑠 = 𝑃𝑗𝑡𝑟𝑎𝑛𝑠 ,𝐼
𝑖=1    ∀ 𝑗𝜖{1,2, … , 𝐽}                                                (21) 

                             ∑ 𝑥𝑖𝑗 = 1,𝐼
𝑖=1    ∀ 𝑗𝜖{1,2, … , 𝐽}                                                        (22) 

∑ ℜ𝑖𝑗 ≥ 𝑑𝑖 ,
𝐽
𝑗=1    ∀ 𝑖𝜖{1,2, … , 𝐽}

                                           
           (23) 

                          
∑ �𝑥𝑖𝑗�0 = 1,𝐽
𝑗=1    ∀ 𝑖𝜖{1,2, … , 𝐼}

                                                     
(24) 

                 𝑥𝑖𝑗𝜖
[0,1],∀𝑖𝜖{1,2, … , 𝐼},∀ 𝑗𝜖{1,2, … , 𝐽}                                              (25) 

where 𝑃𝑖𝑗𝑡𝑟𝑎𝑛𝑠  is the transmit power allocated to UE 𝑖 from RRH 𝑗, 𝑃𝑗𝑡𝑟𝑎𝑛𝑠 is the maximum 
RRH power, 𝑥𝑖𝑗  indicates the bandwidth resource proportion allocated to UE 𝑖 from RRH 𝑗, 
and 𝑑𝑖 is the rate demand of UE 𝑖. Constraint (21) indicates that RRH 𝑗 associated with UE 𝑖 
should run out of resource to UEs for maximizing throughput. Constraint (22) means the sum 
of bandwidth resource allocated to all UEs associated with RRH j should be equal to one. 
This is because in maximizing throughput, a lot of bandwidth must be used. From constraint 
(23), we can state that the achieved throughput of UEs should be greater than their minimum 
QoS demands. Constraint (24) means that one UE can only associate with one RRH 
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simultaneously. Constraint (25) states that, the fraction of resource allocated to users ranges 
from 0 to 1. This is a convex optimization problem and can be efficiently solved using 
existing MATLAB solver CVX [29].  

The proposed algorithm framework is summarized in detail as follows; In step 1, in line 
1-2, the association between UEs and RRHs take place before UEs request resource. In step 
2 from line 3-9, the Q-table of the Q-learning algorithm is initialized and iterated for each 
decision epoch as the demand of UEs changes. Actions are selected randomly initially as 
learning is ongoing. After some time, actions are selected based on the maximum Q-value to 
obtain the set of active RRHs. In step 3, in line 10-12, we obtain an optimal energy 
consumption based on the set of active RRHs customized by solving the resource allocation 
models using MILP for fractional power control with bandwidth adaptation or CVX for full 
power and bandwidth allocation. Lastly, we observe the reward and update the Q-table in 
step 4. 

Initialization Request  of UE;
Build initial association among UE and RRH;
Initialize the Q-table;

Algorithm 1: The RL-based framework
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Execute activation action a ;

For each decision epoch t do (UE demand changed by traffic model)
/* Operation */

Randomly select an activation action,
Otherwise a’ = argmaxQ(s, a);
where Q(·) is estimate by energy consumption and UE Satisfaction;

Obtain the set of active RRHs L;
/* Resource allocation */
Obtain the optimal energy consumption based on the given L 

Reconfigure association of the network;
/* Update */
Observe the reward rk and the new state s’;
Store the state transition(s, a, r, s’);
Update Q-table by Q(s, a) = r + γmaxQ(s’, a’)

 by solving power allocation Using MILP for fractional power with
 bandwidth adaptation or CVX for full power and bandwidth allocation;

End 

 

5. Performance Evaluation 

5.1 Scenario configuration 
To evaluate the performance of our proposed algorithm, we perform the numerical 

simulations using MATLAB. Two solvers are used as shown in the algorithm specification 
to solve the physical resource allocation problem namely: MILP solver [28] and CVX solver 
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[29]. The simulation parameters are provided based on LTE standards and listed in Table 1 
below.  

With the specified actors in the defined system model, we consider three RRHs as a 
cluster which is connected to one BBU pool in the network. In each cluster, the BBU takes 
over the on-off action using the Q-table generated from the Q-learning agent. Inter-cluster 
resource allocation is controlled by a multiple-agent controller. The number of RRHs is 
assumed based on the use case scenario in the experiment. The two use cases defined in this 
paper are assuming fixed number of RRHs from the performance evaluation with changing 
traffic demand perspective and changing number of RRHs from the performance evaluation 
with changing network density perspective. 

Table 1. Simulation Parameters 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 

We also assume the maximum number of RRHs for each BBU cloud to be 3, and at most 
18 in total in the whole system. To be more realistic in our work, we set the system 
bandwidth of RRHs at 20MHz. The threshold of UE sensitivity is set at -120dBm for edge 
UEs. As specified in the network model, the RRH coverage in the network is 200m. The 
number of UEs ranges from 4 to 192 according to the traffic model [14]. The user demand of 
1Mbps is equal for each of the UEs. Each UE is considered to have only one interface. The 
energy consumption largely depends on the transceiver power settings, traffic load and the 
active duration of RRH. As specified in the energy model, the power consumption of RRH is 
set at 6.8W, and 4.3W for the active, and idle states respectively [20]. The transmitter power 
per RRH in active state is 1.0W, while in sleep state it is negligible and therefore, eliminated 
from our model. In addition, two utility functions are adopted in terms of throughput/data 
rate in (10) and QoS satisfaction in (9). 

 

Parameter and units Values 

Number of RRH, 𝐽 ~18 
RRH coverage, 𝑐 200 m 

System Bandwidth, 𝑊𝑗  20 MHz 

Maximum transmit power per RRH, 𝑃𝑗𝑡𝑟𝑎𝑛𝑠 1Watt 
Channel gain, 𝑔𝑖𝑗 9dB 

Noise power spectrum density,  𝜎 -174 dBm/Hz 
Carrier Frequency band, 𝐹 2.4 GHz 

Path loss model 32.4+20lg(F)+20lg(D) 
Shadowing effects,  𝛿 0-8 dB, random 

Angular coefficient in traffic model,  𝑣 0.1 
Number of UEs in traffic model, 𝐼 4-192  

UE sensitivity -120dBm 
Power consumption(active state), 𝑃𝑗𝑎𝑐𝑡𝑖𝑣𝑒  6.8Watt 

Power consumption (sleep state), 𝑃𝑗
𝑠𝑙𝑒𝑒𝑝 4.3Watt 

UE demand, 𝑑𝑖 1Mbps 
Steepness coefficient in satisfaction model,  𝜏 1 

weighted factor in reward function, 𝜔  100 
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In order to evaluate our proposed model and algorithms, we define four different schemes. 
We define scheme I as simple on-off cell activation with the simple nearest-RRH association, 
which is also called the simple on-off scheme. We define scheme II as the cell activation 
with the load ordering-based heuristic scheduling algorithm. In scheme III, Q-learning based 
cell activation algorithm is used, and the fractional power with bandwidth adaptation is 
solved by the MILP solver, which is identified as Q-learning with MILP (Q-learning-MILP). 
Lastly in algorithm scheme IV, we use Q-learning to make a cell activation decision, but the 
full power and bandwidth allocation is solved by the CVX solver, which is identified as Q-
learning with CVX (Q-learning-CVX). We compare our proposed algorithm with the simple 
on-off scheme and the heuristic scheduling algorithm because of the following reasons; all 
the three algorithms are model-free and take the dynamics of traffic distribution into 
consideration. However, the simple on-off scheme is a baseline algorithm that prefers 
nearest-association of UEs and RRHs. If there are no UEs near to an RRH, the RRH is 
switched off and vice versa. The difference between the heuristic scheduling based algorithm 
and the proposed Q-learning algorithm is that, the heuristic algorithm is based on static 
policy, i.e. there is no feedback to the former after scheduling. The learning agent in the Q-
learning based algorithm receives feedback in the form of a reward. As the traffic 
distribution changes, the learning agent selects an optimal solution to the problem. 

The objective of this paper is to optimize the wireless network energy consumption and 
radio resource occupancy while satisfying the QoS requirement of UEs. The simulation 
results can be classified into the following metrics; the number of active RRHs, transmit 
power cost, accumulated total energy consumption and average user QoS satisfaction. The 
normalized number of active RRHs can be used to evaluate the effect of cell activation. For 
Q-learning-MILP scheme, we assume that, the used bandwidth proportion is equal to 
transmit power cost proportion. The transmit power cost can be used to evaluate the effect of 
our radio resource allocation model. Accumulated total energy consumption can be used to 
evaluate optimized effect of the entire wireless network’s energy consumption. Since UEs 
only care about their QoS satisfaction, we can use the QoS satisfaction metric to evaluate the 
effect of user satisfaction. For these four performance criteria, we develop two aspects of 
evaluation in the experiment. One is that we observe the performance of 24 hours-in-a-day-
based traffic model to evaluate the performance of our proposed algorithm with changing 
traffic demand. Another is that we observe the performance with changing network density 
to evaluate the extension of our proposed algorithm. We define the density as the number of 
UEs over the number of RRHs.  

 
5.2. Performance evaluation with changing load 

In this simulation, we configure 18 RRHs which can be considered as 6 clusters with 
3RRHs each in a coverage area of 400m-by-600m. The user demand of the individual UEs 
do not change but the total user demand changes based on the traffic model of 24-hours-in-a-
day. Considering one hour as a decision cycle, we observe the performance in 24 
cycles/hours on the above-mentioned evaluation metrics. The result presented in Fig. 2 is the 
number of active RRHs against 24 hours-in-a-day-based traffic model in terms of UE 
population. The traffic of each hour changes leading to the states of RRHs changing between 
active and sleep. The results of the number of active RRHs, as illustrated in Fig. 2, show that 
the number of active RRHs correlates positively with the traffic volume.  
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Fig. 2. Normalized number of active RRHs 

 
In all 4 schemes, a change in trend of traffic results in relatively same proportional 

change in trend in the number of active RRHs. Cell activation based Q-learning schemes 
outperform scheme I and scheme II. Performance of Q-learning-MILP is nearly the same as 
that of Q-learning-CVX in cell activation. The gain is higher in heuristic scheduling than 
Simple on-off. While the simple on-off increases the number of active RRHs up to 100%, the 
cell activation-based Q-learning schemes increase to less than 70% with the same traffic 
profile. It can be concluded that, cell activation-based Q-learning schemes can support fewer 
number of active RRHs compared with the simple on-off and heuristic scheduling schemes, 
making the cell activation-based Q-learning schemes better than the simple on-off and 
heuristic scheduling schemes in this scenario. 

In Fig. 3, we consider the gains of transmit power cost. Based on the above assumption in 
Q-Learning-MILP that the used bandwidth proportion is equal to transmit power cost 
proportion, we can know that the change in trend of radio resource occupancy proportion is 
the same as transmit power cost. From Fig. 3, it is observed that the transmit power cost of 
Q-learning-CVX is greater than the other three schemes while in schemes I, II and III, the 
transmit power cost is almost the same. This is so because the objective of Q-learning-CVX 
is maximizing throughput. Therefore, this scheme will need more radio resource, while the 
other three schemes allocate radio resource by their QoS satisfaction requirements to save 
radio resource. It can be deduced that, when network is in the limited resource situation Q-
learning-MILP is more suitable. On the other hand, when there is abundance of resource, Q-
learning-CVX is more suitable. 
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Fig. 3. Normalized transmit power cost 

 

To illustrate the achieved total energy consumption of the proposed algorithm, a 
simulation is done with two schemes, Q-learning-MILP and Q-learning-CVX compared with 
the existing heuristic scheduling scheme and simple on-off schemes. The normalized total 
energy consumption is compared, the result being illustrated in Fig. 4. In this paper, we 
consider two aspects of energy cost including energy cost of active RRHs and transmit 
power cost. The total energy consumption is the sum of energy cost of active RRHs and 
transmit power cost. From Fig. 4, the normalized total energy consumption of the simple on-
off scheme is just above 0.83, which corresponds to 1800KJ in actual value, whiles it is 
about 0.67, which corresponds to 1600KJ in the Q-Learning-based schemes. The proposed 
Q-learning-MILP algorithm outperforms the others having the least total energy 
consumption and is closely near to the Q-learning-CVX. This is because, the transmit power 
cost of Q-learning-CVX is more than Q-learning-MILP. The Q-learning based algorithms 
outperform scheme I and scheme II, while heuristic scheduling scheme outperforms simple 
on-off scheme. 

 

Fig. 4. Normalized total energy consumption 
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In order to check if our proposed algorithm can satisfy QoS requirement of all UEs, a 
simulation is done to observe QoS satisfaction with the four schemes. The result is illustrated 
in Fig. 5. Obviously, Q-learning-CVX scheme outperforms the other schemes in terms of 
satisfaction. This is because; the Q-learning-CVX scheme uses as much radio resource 
available to satisfy UEs. In other words, Q-learning-CVX sacrifices its transmit power and 
bandwidth resource to achieve higher satisfaction and throughput.  

 
Fig. 5. User satisfaction 

The satisfaction rate of Q-learning-MILP hinges at 50% for each hour, meaning the Q-
learning-MILP scheme only cares about satisfying the minimum QoS requirement of the 
UEs. For simple on-off and heuristic scheduling schemes, it is observed that, the QoS 
requirements of all UEs are satisfied under light network load. At hour 1-19, the satisfaction 
rate is 50%. As the network load increases further, say at hour 20-24, satisfaction of the UEs 
begin to drop to as low as 35% at hour 23.  In summary, we observed the performance of the 
four schemes in terms of number of active RRHs, transmit power cost, accumulated total 
energy consumption and QoS satisfaction. Based on the above discussion, we conclude that 
our proposed algorithm works better than the other schemes with changing traffic demand. 
To check the scalability of our proposed algorithm for other scenarios, we extend the 
evaluation with changing network density. 
5.3. Performance evaluation with clusters  

In this evaluation, we configure 6 density values based on the ratio of the number of UEs 
to the number of RRHs. We set the number of RRHs range from 3 to 18 by adding 3 RRHs 
for each density value change. In order to show the change of network load from light to 
heavy, we set the number of UEs as 4, 16, 36, 64, 100 and 144. Then the value of density is 
4/3, 8/3, 16/3, 20/3, 24/3. Let each density be divided by the biggest value of density as 
normalization, so the value of density is normalized as 1/6, 2/6, 3/6, 4/6, 5/6, 1. The higher 
the network density, the heavier the network load. 

The result presented in Fig. 6 is the number of active RRHs against the value of 
normalized network density from 1/6 to 1. A change in density leads to the status of RRHs 
changing between active and sleep. The results of the number of active RRHs, as illustrated 
in Fig. 6 show that the number of active RRHs correlates positively with the density. Q-
learning based cell activation schemes outperform schemes I and II just like the evaluation 
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with changing traffic demand. The performance of Q-learning-MILP is same with Q-
learning-CVX in cell activation. The gain is higher in heuristic scheduling than simple on-off 
scheme. However, when the network load is very heavy, for instance at a density of 1, the 
number of active RRHs is the same for all four schemes. In conclusion, Q-learning-based 
schemes use less number of RRHs under light network load but increase to the same level as 
the other schemes under heavy load. 

 
Fig. 6. Normalized number of active RRHs with density changing 

   In this simulation, an evaluation on total energy consumption is done, with the result 
illustrated in Fig. 7. From Fig. 7 the proposed Q-learning-MILP algorithm outperforms the 
others and is closely near to the Q-learning-CVX. This is because, the transmit power cost of 
Q-learning-CVX is more than Q-learning-MILP. Q-learning based algorithm outperforms 
schemes I and II, while heuristic scheduling scheme outperforms simple on-off scheme. It is 
deduced that, the Q-learning-based algorithms attain lower energy costs than the simple on-
off and heuristic scheduling schemes even with increasing density. 

 
Fig. 7. Normalized total energy cost with density changing 
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In this simulation, we check the ability of our proposed algorithm to satisfy the QoS 
requirement of all UEs. A simulation is done to observe QoS satisfaction with the four 
schemes. The result illustrated in Fig. 8 show that Q-learning-CVX scheme outperforms the 
other schemes in terms of satisfaction.  

 
Fig. 8. Satisfaction with density changing 
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Based on the above discussion, we conclude that our proposed algorithm performs better 
than the others even under the changing density scenario. 

6. Conclusion 
In this paper, we proposed a generic framework of autonomous cell activation and 

customized physical resource allocation schemes for energy consumption and QoS 
optimization in wireless networks. In the cell activation scheme, we set up a Q-learning 
model to satisfy the QoS requirements of users and to achieve low energy consumption with 
the minimum number of active RRHs under varying traffic demand. In the customized 
physical resource allocation scheme, we formulated the EE-QoS optimization problem as 
fractional power control with bandwidth adaptation and full power and bandwidth allocation 
models. Under the fractional power control with bandwidth adaptation model, we minimized 
bandwidth resource usage while satisfying user QoS with limited resource. In the full power 
and bandwidth allocation model, we maximized the system throughput while kept fairness 
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among users by utilizing all bandwidth resource available. The proposed schemes, Q-
learning-CVX and Q-learning-MILP were compared with the existing simple on-off and 
heuristic scheduling schemes. Simulation results showed that, the proposed Q-learning based 
schemes outperform the other existing schemes in terms of energy consumption and user 
satisfaction. 
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