• 제목/요약/키워드: Automatic validation

검색결과 188건 처리시간 0.024초

Development of an Automatic Blood Pressure Device based on Korotkoff Sounds

  • Li, Xiong;Im, Jae Joong
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.227-236
    • /
    • 2019
  • In this study, we develop a Korotkoff sound based automatic blood pressure measurement device including sensor, hardware, and analysis algorithm. PVDF-based sensor pattern was developed to function as a vibration sensor to detect of Korotkoff sounds, and the film's output was connected to an impedance-matching circuit. An algorithm for determining starting and ending points of the Korotkoff sounds was established, and clinical data from subjects were acquired and analyzed to find the relationship between the values obtained by the auscultatory method and from the developed device. The results from 86 out of 90 systolic measurements and 84 out of 90 diastolic measurements indicate that the developed device pass the validation criteria of the international protocol. Correlation coefficients for the values obtained by the auscultatory method and from the developed device were 0.982 and 0.980 for systolic and diastolic blood pressure, respectively. Blood pressure measurements based on Korotkoff sound signals obtained by using the developed PVDF film-based sensor module are accurate and highly correlated with measurements obtained by the traditional auscultatory method.

Strain Gauge의 Blade내 설치위치 최적화 (Robust Optimal Positioning of Strain Gauges on Blades)

  • Park, Byeong-Keun;Yang, Bo-Suk;Marc P. Mignolet
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.345.2-345
    • /
    • 2002
  • This paper focuses on the formulation and validation of an automatic strategy for the selection of the locations and directions of strain gauges to capture at best the modal response of a blade in a series of modes. These locations and directions are selected to render the strain measurements as robust as possible with respect to random mispositioning of the gauges and gauge failures. (omitted)

  • PDF

Basic Aspects of Signal Processing in Ultrasonic Imaging

  • Saito, Masao
    • 대한의용생체공학회:의공학회지
    • /
    • 제5권1호
    • /
    • pp.5-8
    • /
    • 1984
  • As the ensemble averaged dz/dt signal during exercise gets smoothed, it is difficult to find the distinctive marks for estimation of stroke volume. The cross correlation function was made use of estmating these marks for automatic calculation by computer from the ensemble averaged dz/dt signal. LVET(Left Ventricular Ejection Time) and stroke volume were estimated based on the calculated parameters from the characteristic points. LVET, stroke volume calculated by hand, by the ensemble average and the cross correlation were compared for accuracy validation.

  • PDF

상호상관 관계를 이용한 운동중의 임피던스 파형에서의 특성점 검출 (Detection of Distinctive Points in Impedance Cardiogram during Exercise by Cross-Correlation Method)

  • 오인식;송철규
    • 대한의용생체공학회:의공학회지
    • /
    • 제12권4호
    • /
    • pp.261-266
    • /
    • 1991
  • As the ensemble averaged dz/dt signal during exercise gets smoothed, it is difficult to find the distinctive marks for estimation of stroke volume. The cross correlation function was made use of estimating these marks for automatic calculation by computer from the ensemble averaged dz/dt signal. LVET( Left Ventricular Ejection Time) and stroke volume were estimated based on the calculated parameters from the characteristic points. LVET, stroke volume calculated by hand, by the ensemble average and the cross correlation were compared for accuracy validation.

  • PDF

Machine Learning Based Automatic Categorization Model for Text Lines in Invoice Documents

  • Shin, Hyun-Kyung
    • 한국멀티미디어학회논문지
    • /
    • 제13권12호
    • /
    • pp.1786-1797
    • /
    • 2010
  • Automatic understanding of contents in document image is a very hard problem due to involvement with mathematically challenging problems originated mainly from the over-determined system induced by document segmentation process. In both academic and industrial areas, there have been incessant and various efforts to improve core parts of content retrieval technologies by the means of separating out segmentation related issues using semi-structured document, e.g., invoice,. In this paper we proposed classification models for text lines on invoice document in which text lines were clustered into the five categories in accordance with their contents: purchase order header, invoice header, summary header, surcharge header, purchase items. Our investigation was concentrated on the performance of machine learning based models in aspect of linear-discriminant-analysis (LDA) and non-LDA (logic based). In the group of LDA, na$\"{\i}$ve baysian, k-nearest neighbor, and SVM were used, in the group of non LDA, decision tree, random forest, and boost were used. We described the details of feature vector construction and the selection processes of the model and the parameter including training and validation. We also presented the experimental results of comparison on training/classification error levels for the models employed.

원 스테이션 파스너 자동포장기 개발(I): 패킹 메커니즘의 최적설계 (Development of Automatic Packing System of One Station for Fasteners(I): Optimization Design of Packing Mechanism)

  • 김용석;정찬세;양순용
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.335-341
    • /
    • 2011
  • In this paper, we proposed an automatic packing mechanism of one station concept for fastener objects where the continuous work is performed in a finite space. The proposed packing mechanism is composed of supporting frame, feeding supply, air shower device, clamping/opening device, batch charging device, sealing/cutting device and supply adjusting device. And, these mechanisms have been modularized through mechanical, dynamical, structural and fluid optimized design using the SMO(SimDesigner Motion) analysis module. Also, the virtual prototype was carried out using the 3-D CAD program. The packing process is consisted performed in the order of feeding, clamping, bottom sealing, cutting, opening, object charging, closing and the upper sealing. And the time of these cycles were designed to be completed in 15-20 seconds. This packing mechanism will be created as a prototype in the near future. In addition, it will be applied to the production scenes after going through a field test for the validation of performance.

Combining Machine Learning Techniques with Terrestrial Laser Scanning for Automatic Building Material Recognition

  • Yuan, Liang;Guo, Jingjing;Wang, Qian
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.361-370
    • /
    • 2020
  • Automatic building material recognition has been a popular research interest over the past decade because it is useful for construction management and facility management. Currently, the extensively used methods for automatic material recognition are mainly based on 2D images. A terrestrial laser scanner (TLS) with a built-in camera can generate a set of coloured laser scan data that contains not only the visual features of building materials but also other attributes such as material reflectance and surface roughness. With more characteristics provided, laser scan data have the potential to improve the accuracy of building material recognition. Therefore, this research aims to develop a TLS-based building material recognition method by combining machine learning techniques. The developed method uses material reflectance, HSV colour values, and surface roughness as the features for material recognition. A database containing the laser scan data of common building materials was created and used for model training and validation with machine learning techniques. Different machine learning algorithms were compared, and the best algorithm showed an average recognition accuracy of 96.5%, which demonstrated the feasibility of the developed method.

  • PDF

Prediction of Motion State of a Docking Small Planing Ship using Artificial Neural Network

  • Hoang Thien Vu;Thi Thanh Diep Nguyen;Hyeon Kyu Yoon
    • 한국항해항만학회지
    • /
    • 제48권2호
    • /
    • pp.116-124
    • /
    • 2024
  • Automatic docking of small planing ship is a critical aspect of maritime operations, requiring accurate prediction of motion states to ensure safe and efficient maneuvers. This study investigates the use of Artificial Neural Network (ANN) to predict motion state of a small planing ship to enhance navigation automation in port environments. To achieve this, simulation tests were conducted to control a small planing ship while docking at various heading angles in calm water and in waves. Comprehensive analysis of the ANN-based predictive model was conducted by training and validation using data from various docking situations to improve its ability to accurately capture motion characteristics of a small planing ship. The trained ANN model was used to predict the motion state of the small planning ship based on any initial motion state. Results showed that the small planing ship could dock smoothly in both calm water and waves conditions, confirming the accuracy and reliability of the proposed method for prediction. Moreover, the ANN-based prediction model can adjust the dynamic model of the small planing ship to adapt in real-time and enhance the robustness of an automatic positioning system. This study contributes to the ongoing development of automated navigation systems and facilitates safer and more efficient maritime transport operations.

Automatic Detection of Type II Solar Radio Burst by Using 1-D Convolution Neutral Network

  • Kyung-Suk Cho;Junyoung Kim;Rok-Soon Kim;Eunsu Park;Yuki Kubo;Kazumasa Iwai
    • 천문학회지
    • /
    • 제56권2호
    • /
    • pp.213-224
    • /
    • 2023
  • Type II solar radio bursts show frequency drifts from high to low over time. They have been known as a signature of coronal shock associated with Coronal Mass Ejections (CMEs) and/or flares, which cause an abrupt change in the space environment near the Earth (space weather). Therefore, early detection of type II bursts is important for forecasting of space weather. In this study, we develop a deep-learning (DL) model for the automatic detection of type II bursts. For this purpose, we adopted a 1-D Convolution Neutral Network (CNN) as it is well-suited for processing spatiotemporal information within the applied data set. We utilized a total of 286 radio burst spectrum images obtained by Hiraiso Radio Spectrograph (HiRAS) from 1991 and 2012, along with 231 spectrum images without the bursts from 2009 to 2015, to recognizes type II bursts. The burst types were labeled manually according to their spectra features in an answer table. Subsequently, we applied the 1-D CNN technique to the spectrum images using two filter windows with different size along time axis. To develop the DL model, we randomly selected 412 spectrum images (80%) for training and validation. The train history shows that both train and validation losses drop rapidly, while train and validation accuracies increased within approximately 100 epoches. For evaluation of the model's performance, we used 105 test images (20%) and employed a contingence table. It is found that false alarm ratio (FAR) and critical success index (CSI) were 0.14 and 0.83, respectively. Furthermore, we confirmed above result by adopting five-fold cross-validation method, in which we re-sampled five groups randomly. The estimated mean FAR and CSI of the five groups were 0.05 and 0.87, respectively. For experimental purposes, we applied our proposed model to 85 HiRAS type II radio bursts listed in the NGDC catalogue from 2009 to 2016 and 184 quiet (no bursts) spectrum images before and after the type II bursts. As a result, our model successfully detected 79 events (93%) of type II events. This results demonstrates, for the first time, that the 1-D CNN algorithm is useful for detecting type II bursts.

Automatic Detection and Classification of Rib Fractures on Thoracic CT Using Convolutional Neural Network: Accuracy and Feasibility

  • Qing-Qing Zhou;Jiashuo Wang;Wen Tang;Zhang-Chun Hu;Zi-Yi Xia;Xue-Song Li;Rongguo Zhang;Xindao Yin;Bing Zhang;Hong Zhang
    • Korean Journal of Radiology
    • /
    • 제21권7호
    • /
    • pp.869-879
    • /
    • 2020
  • Objective: To evaluate the performance of a convolutional neural network (CNN) model that can automatically detect and classify rib fractures, and output structured reports from computed tomography (CT) images. Materials and Methods: This study included 1079 patients (median age, 55 years; men, 718) from three hospitals, between January 2011 and January 2019, who were divided into a monocentric training set (n = 876; median age, 55 years; men, 582), five multicenter/multiparameter validation sets (n = 173; median age, 59 years; men, 118) with different slice thicknesses and image pixels, and a normal control set (n = 30; median age, 53 years; men, 18). Three classifications (fresh, healing, and old fracture) combined with fracture location (corresponding CT layers) were detected automatically and delivered in a structured report. Precision, recall, and F1-score were selected as metrics to measure the optimum CNN model. Detection/diagnosis time, precision, and sensitivity were employed to compare the diagnostic efficiency of the structured report and that of experienced radiologists. Results: A total of 25054 annotations (fresh fracture, 10089; healing fracture, 10922; old fracture, 4043) were labelled for training (18584) and validation (6470). The detection efficiency was higher for fresh fractures and healing fractures than for old fractures (F1-scores, 0.849, 0.856, 0.770, respectively, p = 0.023 for each), and the robustness of the model was good in the five multicenter/multiparameter validation sets (all mean F1-scores > 0.8 except validation set 5 [512 x 512 pixels; F1-score = 0.757]). The precision of the five radiologists improved from 80.3% to 91.1%, and the sensitivity increased from 62.4% to 86.3% with artificial intelligence-assisted diagnosis. On average, the diagnosis time of the radiologists was reduced by 73.9 seconds. Conclusion: Our CNN model for automatic rib fracture detection could assist radiologists in improving diagnostic efficiency, reducing diagnosis time and radiologists' workload.