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1. Introduction

In recent years, small planing ship have constituted an

increasing share of ship traffic in ports. The focus on small

planing ship allows for more controlled testing and analysis,

facilitating the development and validation of predictive

models using simulated data and actual data. Furthermore,

choosing small planing ship as a research topic enables

researchers to address specific challenges and opportunities

in navigation automation. In addition, small planing ship are

often maneuverability and exhibit different motion

characteristics than larger ships, making them suitable

subjects for studying motion state prediction. Docking small

planing ship in crowded port environments has become a

top concern in maritime operations. Traditional ship docking

methods often rely on manual intervention, which causes

errors and inefficiencies. Therefore, there is growing

interest in the use of Artificial Neural Networks (ANN) to

automate and optimize the docking process. ANN, a subset

of artificial intelligence, offers a potential solution for

predicting motion behavior when maneuvering a small

planing ship. The predictive power of an ANN stems from

its ability to analyze and learn relationships in a complex

data set, making it suitable for modeling the dynamic and

nonlinear features of ship motion. Such predictive models

have enormous potential to revolutionize maritime

operations by automating operations, minimizing human

error, and improving overall safety.

In the past, researchers have studied motion prediction

during ship docking using neural network algorithms in

supervised machine learning. Ship trajectory during docking

using simulation data in both wind and no wind conditions

were predicted (Ahmed et al., 2012). Simulation data was

collected by controlling the ship docking using the ANN

algorithm and a Proportional Derivative controller. The

ANN prediction model was further researched and

developed using experimental data from the turning circle

test (Ahmed et al., 2013). Ship motion states during docking

were predicted using control simulation data in scenarios

with no wind, constant wind, and dynamic wind (Shuai et

al., 2019). Most recently, the ship's trajectory when docking

was predicted using a long-short-term memory model in a

supervised machine learning model (Robert et al., 2020). In

addition, the ANN method was used to model nonlinear

response models and linear hydrodynamic models of ship

maneuvering motion (Lou et al., 2016). ANN method was
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also applied to model the maneuverability characteristics of

a scaled model ship using experimental data (Moreira et al.,

2023).

In our study, control simulation tests are conducted at

various initial heading angles in calm water and waves. A

mathematical model of ship maneuvering is used to

simulate ship motion in three degrees of freedom (DOF).

Rudder angle and propeller revolution are two variables

used to control the ship, achieved by adjusting the control

adjustment bars in the simulation interface. Control

simulation results including x0 coordinate, y0 coordinate,

heading angle, rudder angle, and propeller revolution, which

are used as both training data and testing data for the

ANN model. Once the ANN model is trained on the

training data, validation is performed using the testing data.

By inputting the initial ship motion state (x0 coordinate, y0
coordinate and heading angle) into the trained and validated

ANN model, the next ship motion state (rudder angle and

propeller revolution) is predicted. The x0 coordinate, y0
coordinate and heading angle in the next state are

calculated using a mathematical model of ship maneuvering.

The predicted ship states are continuously updated as input

values of the ANN model. These predicted ship states are

then compared to the final ship state at the dock. The

prediction process ends when the error between the

predicted state and the target state is within 5% in calm

water and 10% in waves.

2. Docking problem and simulation model

2.1 Ship docking problem

According to the ITTC recommendation, high-speeds

ships are defined as ships with a Froude number above

0.45, and/or a speed above 3.7▽1/6 (m/s), where ▽ in m3

(ITTC, 2008). Small planing ship is often designed to

operate at high speeds. However, the situation required

operating at much lower speeds to ensure safe and precise

maneuvering of ships docked in ports. This poses an

interesting challenge for researchers who want to

investigate the motion behavior of small planing ship.

Therefore, adapting to the demands of low-speeds docking

operations required careful consideration and adjustment of

navigation strategies. Two requirements have been

proposed for captains in maneuvering ships when docked

(Kose et al., 1989). First, the ship's final docking location

must be some distance from the dock, not entirely at the

dock. Secondly, the captain must have enough time to plan

the maneuvering of the ship in an emergency. Therefore,

two phases of the ship docking process were proposed

(Shuai et al., 2019), as depicted in Fig. 1. These phases

include the ballistic phase and the side-push phase. In the

ballistic phase, the ship is maneuvered to change course,

speed and stops using the main propulsion and rudder. In

the side-push phase, the ship is docked using tunnel

thrusters to provide side thrust. In Fig. 1, two right-handed

coordinate systems were used in ship maneuvering. The

earth-fixed coordinate system (Oxy) was assumed to be at

the midship at time t0. The body-fixed coordinate system

(O0x0y0) was assumed to be at the midship. The heading

angle  is defined as the angle between the directions of

the x0-axis and the x-axis.

Dock

Wave
Ballistic
phase

Side-push
phase

Fig. 1 Coordinate system for ship docking

In our study, the first phase of the docking operation was

conducted. The ship departed from the stationary state and

maneuvered toward the port at low speed at various initial

heading angles. The ship docked at the final position of the

ballistic phase (xn, yn). The final position was considered

the error range between the predicted motion state and the

final target state, which is within 5% in calm water and

10% in waves. The range of the final position of the

ballistic phase is depicted in Fig. 2. In addition, a leisure

boat is a small planing ship that was chosen to study the

ship maneuvering behavior in port. The principal

dimensions of the ship which is considered the target ship

are described in Table 1.

Fig. 2 The range of the final position
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Table 1 Ship parameters

Item Unit Value

Length, L m 9.450

Breadth, B m 3.050

Draft, T m 0.939

Displacement, ▽ m3 5.172
Longitudinal center of

gravity from midship, xG
m -1.770

Power, P W 164053.972

2.2 Ship mathematical model

During maneuvering, ship motion is described by 6DOF

including surge, sway, heave, roll, pitch and yaw. For

surface ships, ship motion is simplified into 3DOF, including

surge, sway and yaw. The ship motion equation for small

planing ship was described as Eq. (1) (Katayama et al.,

2009).
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where  ,  and  are the ship mass, the longitudinal

center of gravity in the body-fixed coordinate system and

the moment of inertia in yaw motion, respectively.  ,  and

 are the velocities on the x-axis, y-axis, and z-axis,

respectively.  ,  and  are the accelerations on the

x-axis, y-axis, and z-axis, respectively. ,  and  are

symbols representing the hull, propeller and wave,

respectively. ,  and  are denoted for the hydrodynamic

forces acting on the ship's hull as the x-axis, y-axis, and

z-axis, respectively. Applying the Taylor-series expansion

extended to the 3rd-order function, these hydrodynamic

forces acting on the ship's hull are described by Eq. (2). In

Eq. (2), the 3rd-order polynomial function is replaced by a

2nd-order polynomial function and the absolute value of

sway velocity and yaw rate.
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where 
′ , ′ , ′ , and 

′ are the surge derivatives.


′ , ′ , 

′ , 
′ , 

′ , and 
′ are the sway

derivatives. 
′ , ′ , ′ , ′ , ′ , and 

′ are the

yaw derivatives.  is the water density. The superscripts

represent non-dimensional variables. In addition, the

hydrodynamic coefficients for surge, sway and yaw motion

were obtained based on the experiment. The hydrodynamic

coefficients for surge, sway and yaw motion are described

in Table 2.

Hydrodynamic forces due to propeller are described by Eq. (3).

For our small planing ship, the leisure boat uses two outboard

motors as the main propulsion. Outboard motors include the

engine, gearbox and propeller. The propellers used are coupled

twin propellers with bravo three drives. The thrust of outboard

motors is calculated using Eq. (4) (Gerr, 1989).

  cos

  sin

  sin
(3)

 ×× 


(4)

where (N) is the thrust,  is the longitudinal coordinates of

the propeller to the ship's center of gravity and  is the rudder

angle.  is the propeller revolution.  is the pitch face propeller.

 is the ship mass.  is the apparent slip coefficient.  is the

constant chosen for the type of ship being considered.  is the

Taylor wake factor.

Wave force was obtained by performing the seakeeping test in

the experiment. The wave force data was stored as a database

and is described in Fig. 2.
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Fig. 3 Wave force

Table 2 Hydrodynamic coefficients

HD coeff. Value HD coeff. Value


′ -6.92E-03 

′ -4.71E-02


′ -1.84E-02 

′ 4.69E-02


′ -3.46E-02 

′ -1.05E-02


′ -3.70E-02 

′ -1.56E-02


′ 2.27E-02 

′ 2.91E-03


′ -9.70E-03 

′ -2.79E-03


′ -1.04E-02 

′ -3.70E-02


′ -3.05E-03 

′ 8.08E-03

3. Proposed approach

3.1 Artificial Neural Network

ANN are computational models inspired by the structure

and function of biological neural networks in the human

brain. They consist of interconnected nodes, or neurons,

organized in layers, including input, hidden, and output

layers depicted in Fig. 3. During the training process, the

ANN iteratively adjusts the weights and biases of its

connections to minimize the error between the predicted

and target values. The error is calculated using the mean

square error (MSE) method. This optimization process,

often performed using algorithms like backpropagation,

allows ANN to learn complex nonlinear relationships and

make accurate predictions based on new input data.

The predicted values of each node in the hidden layer can

be written as shown in Eq. (5).

  (5)

where  and  are the output value and the bias

corresponds to each node in the hidden layer, respectively.

 and  are the input value and weight corresponding to

each node in the input layer, respectively.  is the

activation function. There are many activation functions

used in regression problems such as Sigmoid, Tanh and

ReLu described by Eq. (6).

Sigmoid 



Tanh 



ReLu  max 

(6)

Similarly, the predicted value of each node in the output

layer can be rewritten as Eq. (7).

 purelin (7)

where  and  are the output value and the bias

corresponds to each node in the output layer, respectively.

 and  are the output value and weight corresponding

to each node in the hidden layer, respectively. purelin is

the linear activation function.

The objective function of the training model is written as:

  






  
 (8)

where  is the number of nodes in the output layer.  is

the target output value.

The process of training and validating the ANN model

involves splitting the data set into training and testing sets.

This is typically done using a ratio such as 75% of the

data set for the training set and 25% of the data set for the

testing set. The training set was used to optimize the

model's parameters through backpropagation, during which

the model learns to minimize the difference between

predicted and target values. Meanwhile, the testing set was

used to assess the model's performance on data that was

not observed during training, which helped avoid overfitting

and underfitting phenomena. This iterative process
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continues until satisfactory performance is achieved on the

testing set, ensuring the model's ability to generalize to

unseen data.

Fig. 4 ANN model

In terms of ship motion prediction, the ANN model was

trained and validated using historical data from control

simulations. After training and validation, the ANN model

was used to predict ship motion states, as depicted in Fig.

4. The input data can include variables such as x0
coordinate, y0 coordinate and heading angle, while the

output data represents ship control parameters such as

rudder angle and propeller revolution. Using mathematical

models in ship maneuvering and the 4th-order Runge–

Kutta method, ship motion states (surge velocity, sway

velocity, yaw rate, x0 coordinate, y0 coordinate and heading

angle) were calculated and continuously updated as input

data for the ANN model.

Fig. 5 Process of predicting the ship motion state

3.2 Simulation and prediction interface

The entire process of control simulation and ship motion

state prediction was performed using the visualization

interface shown in Fig. 5. This approach provides users

with direct observation of the ship motion behavior and

makes it easy to adjust to parameters or algorithms when

required. The use of the visualization interface for

simulation enables rapid responses to ship motions in

real-time.

(a) Control simulation (b) Ship motion prediction

Fig. 6 Visualization interface

By adjusting the adjustment bar of the control simulation

interface, the rudder angle and propeller revolution values

were continuously changed and updated in the ship motion

model. Furthermore, the interface provides immediate

feedback by displaying the ship motion states during

control. The ship docking control simulation aims to generate a

variety of data as training data for the ANN model. The richer

the training data, the easier it is for the ANN model to capture

the complex relationship between input values and output values.

To achieve this, the control simulation was performed with the

same origin coordinates but with various initial heading angles

both in calm water and in waves. The test conditions are

described in Table 3.

Table 3 Test conditions for control simulation

Test condition Value

Initial position (m) (x0,y0) = (0,0)

Initial heading angle (°) -90 to 90, interval 15

The initial and final states of the ship motion can be

entered into the ship motion prediction interface. The

interface then predicts and displays the next states of ship

motion. This integrated approach streamlines workflow and

enhances efficiency in directly analyzing and responding to

ship maneuvers. The test conditions for predicting ship

motion states are designed as shown in Table 4.



Prediction of Motion State of a Docking Small Planing Ship Using Artificial Neural Network

- 121 -

Table 4 Test conditions for ship motion state prediction

Test condition Initial state Final state

Calm water
Case 1 (0,0,23.3°) (75,35,15°)

Case 2 (0,0,-38.8°) (75,35,15°)

Wave
Case 1 (0,0,55.2°) (75,35,15°)

Case 2 (0,0,-10.4°) (75,35,15°)

4. Result

4.1 Control simulation for ship docking

In the case of a small planing ship docking, ship speed was 2

knots. The ship moved from a stationary state until it reached

the target speed. The rudder angle was adjusted to maneuver

the ship toward the dock. When the ship reached the dock, the

propeller revolution was reduced to 0 rpm, but ship speed did

not suddenly decrease to 0 knots. Based on the ship's existing

momentum according to the inertial principle and the geometric

characteristics of the small planing ship, the ship continued to

move slowly over time. The simulation results of ship docking

control in calm water and waves are shown in Fig. 6 and Fig. 7,

respectively.
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Fig. 7 Ship docking simulation in clam water
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Fig. 8 Ship docking simulation in wave

In the wave case, the wave direction of 180° and the

wavelength over ship length ratio  of 0.5 were chosen for

analysis. Notably, the presence of waves significantly influences

the docking process. Due to the wave forces, the ship's existing

momentum and ship speed decrease faster compared to calm

water conditions.

4.2 ANN algorithm validation

Before training an ANN model, the structure off the ANN

model must be determined. The neural network structure

includes activation functions, the number of hidden layers,

the number of nodes in each hidden layer, and the number

of epochs. A well-defined structure ensures that the ANN

has the necessary complexity to adequately solve a given

problem while optimizing computational efficiency and

resource utilization. Moreover, determining the model

structure is crucial to achieving optimal generalization

performance. The Multi-Layer Perceptron Regressor

(MLPRegressor) method was employed to determine the

model structure. The structure is selected based on the

minimum MSE value between the predicted and target

values in the training data. To choose an effective and

suitable model structure for any given problem, it is
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necessary to test different model structures on the same

training data. A variety of ANN model structures are

assumed. Activation functions include ReLu, Tanh, Sigmoid

and Linear. The number of nodes in each hidden layer is

assumed to be the same. The number of hidden layers is

set to [1,2,3,4,5] and the number of nodes in each hidden

layer is set to [3,6,9,12,15]. Each component of the ANN

model structure is permuted and continuously updated into

the MLPRegressor model. The results of the MSE value for

the ANN model structure are shown in Fig. 8. The

components of the ANN model structure with the minimum

MSE value were selected. The optimized ANN model

structure includes 5 hidden layers, 15 nodes in each hidden

layer, 5000 epochs and the ReLu activation function.

Once the ANN model structure is determined, model

validation should be performed using test data to ensure the

model's ability to generalize to unseen data. The validation

results of the ANN model are presented in Fig. 9, depicting

the predicted rudder angle and propeller revolution. The

comparison of the predicted values and target values in the

testing data shows a good fit for the target values. In

addition, the model loss, which measures the disparity

between training and validation values, is minimal.

Therefore, these results indicate the ANN model's

effectiveness in the prediction process.
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Fig. 10 ANN model validation

4.3 Next motion state prediction for ship docking

The ANN model was trained and then used to predict ship

motion states using the results for ship docking control

simulation in calm water in Fig. 6. As shown in Table 4,

the next motion states were predicted at the initial heading

angles of 23.3° and -38.8°. The prediction process is

complete when the error between the predicted motion state

and the target final state is within 5%. Similarly, in the

case of waves, the ANN model was trained based on

simulated results for ship docking control simulation in Fig.

7. Predictions off next motion states are made at initial

heading angles of 55.2° and -10.4°, with the prediction

process ending when the error is within 10%. The results

for motion state prediction in calm water and waves are

shown in Fig. 10 and Fig. 11, respectively. It's worth

noting that under the influence of the training data, ship

speed in the predicted final state has not yet reached zero.

However, automatic navigation while docking the ship in

the ballistic phase has been completed.

The performance of the ANN model and the quality of the

predicted results depend on the quality of the training data.

To achieve this, data obtained from free-running model

tests in the experiment or sea trial data should be applied.

These data sets can provide valuable insight into the

dynamics of small planing ship's docking operations,

providing a more comprehensive representation of



Prediction of Motion State of a Docking Small Planing Ship Using Artificial Neural Network

- 123 -

real-world scenarios. In addition, maneuvering small ships

at low speeds also causes yaw rotating motion. This

rotation increases the complexity of the docking process,

which must be accounted for in the training data and model

structure.
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Fig. 11 Motion state prediction in calm water
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Fig. 12 Motion state prediction in wave

5. Conclusion

In our study, the ANN model is trained based on the control

simulation results of ship docking in calm water and wave

conditions. The ANN prediction model accurately predicted

the motion states of small planing ship during docking. The

concluding remarks are as follows:

First, ship motion states were simulated by controlling the

rudder angle and propeller revolution at various initial

heading angles. Due to the influence of the principle of

inertia and the geometric characteristics of small planing

ship, the ship continues to move slowly over time when the

propeller is stopped.

Second, the ANN model is trained and validated using

control simulation data. The ANN model structure has been

optimized to suit the prediction problem under various

environmental conditions.

Third, given any initial motion state, the next motion states

of the ship are predicted. The ship was maneuvered

automatically and successfully docked during the ballistic

phase.

Fourth, the reliability of the ANN method is assessed as

high by evaluating the model loss value. Therefore, the ANN

model performs well in predicting ship motion states during

docking. In addition, the ANN model is useful in developing

a ship dynamic model to respond to the motion states of

small planing ship in real-time. The ANN prediction model

can be combined with the automatic positioning system of

small ships in the real world to predict motion status, detect

abnormal motion, and predict collision avoidance.

Finally, the ship was successfully maneuvered to dock

automatically during the ballistic phase. However, to improve

the prediction performance of the ANN model as well as the

results of predicting motion states in ship docking, some

problems should be considered in future research such as:

expanding training data with experimental data and sea trial

data, considering more dynamic environmental, considering

yaw rotation phenomenon, considering systematic or random

errors and evaluating prediction performance between

prediction techniques in machine learning.
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