KIPS Transactions on Software and Data Engineering
/
v.4
no.6
/
pp.261-268
/
2015
In spoken chatting systems, users'spoken queries are converted to text queries using automatic speech recognition (ASR) engines. If the top-1 results of the ASR engines are incorrect, these errors are propagated to the spoken chatting systems. To improve the top-1 accuracies of ASR engines, we propose a post-processing model to rearrange the top-n outputs of ASR engines using a ranking support vector machine (RankSVM). On the other hand, a number of chatting sentences are needed to train chatting systems. If new chatting sentences are not frequently added to training data, responses of the chatting systems will be old-fashioned soon. To resolve this problem, we propose a data collection model to automatically select chatting sentences from TV and movie scenarios using a support vector machine (SVM). In the experiments, the post-processing model showed a higher precision of 4.4% and a higher recall rate of 6.4% compared to the baseline model (without post-processing). Then, the data collection model showed the high precision of 98.95% and the recall rate of 57.14%.
For automatic web scraping, unnecessary components such as menus and advertisements need to be removed from web pages and main contents should be extracted automatically. A content block tends to be located in the middle of a web page. In particular, Korean web documents rarely include metadata and have a complex design; a suitable method of content extraction is therefore needed. Existing content extraction algorithms use the textual and structural features of content blocks because processing visual features requires heavy computation for rendering and image processing. In this paper, we propose a new content extraction method using the tag positions in HTML as a quasi-visual feature. In addition, we develop a tag rank position, a type of tag position not affected by text length, and show that gradient boosting with the tag rank position is a very accurate content extraction method. The result of this paper shows that the content extraction method can be used to collect high-quality text data automatically from various web pages.
Lee Jae-Sung;Kim Mi-Suk;Oh Yong-Soon;Lee Young-Sung
The KIPS Transactions:PartB
/
v.13B
no.2
s.105
/
pp.155-162
/
2006
The medical thesaurus, MeSH (Medical Subject Heading), has been used as a controlled vocabulary thesaurus for English medical paper indexing for a long time. In this paper, we propose an automatic cross language keyword assignment method, which assigns English MeSH index terms to the abstract of a Korean medical paper. We compare the performance with the indexing performance of human indexers and the authors. The procedure of index term assignment is that first extracting Korean MeSH terms from text, changing these terms into the corresponding English MeSH terms, and calculating the importance of the terms to find the highest rank terms as the keywords. For the process, an effective method to solve spacing variants problem is proposed. Experiment showed that the method solved the spacing variant problem and reduced the thesaurus space by about 42%. And the experiment also showed that the performance of automatic keyword assignment is much less than that of human indexers but is as good as that of authors.
Due to the rapid advancement and distribution of smart devices of late, document data on the Internet is on the sharp increase. The increment of information on the Web including a massive amount of documents makes it increasingly difficult for users to understand corresponding data. In order to efficiently summarize documents in the field of automated summary programs, various researches are under way. This study uses TextRank algorithm to efficiently summarize documents. TextRank algorithm expresses sentences or keywords in the form of a graph and understands the importance of sentences by using its vertices and edges to understand semantic relations between vocabulary and sentence. It extracts high-ranking keywords and based on keywords, it extracts important sentences. To extract important sentences, the algorithm first groups vocabulary. Grouping vocabulary is done using a scale of specific weight. The program sorts out sentences with higher scores on the weight scale, and based on selected sentences, it extracts important sentences to summarize the document. This study proved that this process confirmed an improved performance than summary methods shown in previous researches and that the algorithm can more efficiently summarize documents.
Understanding consumer behavior based on the analysis of the customer data is one essential part of analytic CRM. To do this, the analytic skills for data extraction and data processing are required to users. As a user has various kinds of questions for the consumer data analysis, the user should use database language such as SQL. However, for the firm's user, to generate SQL statements is not easy because the accuracy of the query result is hugely influenced by the knowledge of work-site operation and the firm's database. This paper proposes a natural language based database search framework finding relevant database elements. Specifically, we describe how our TableRank method can understand the user's natural query language and provide proper relations and attributes of data records to the user. Through several experiments, it is supported that the TableRank provides accurate database elements related to the user's natural query. We also show that the close distance among relations in the database represents the high data connectivity which guarantees matching with a search query from a user.
The objective of this study was to examine the effectiveness of newly developed program for the recovery and relapse prevention in patients with anxiety disorder. Twenty-four patients with anxiety disorder received Mindfulness-Based Cognitive Therapy (MBCT) session weekly for a period of overall 8 weeks-program. Changes of depression, anxiety, negative and positive automatic thought were compared before and after the program. Depression and anxiety were improved significantly after the MBCT program(Z=-1.9, p=.06, Z=-2.9, p<.001). Conclusions: MBCT may be effective at reducing negative automatic thought and relieving anxiety and depressive symptoms in patients with anxiety disorder. However, large-sample, randomized controlled trials will be needed for generalization.
International Journal of Computer Science & Network Security
/
v.23
no.11
/
pp.93-98
/
2023
Instagram is one of the fastest-growing online photo social web services where users share their life images and videos with other users. Image tagging is an essential step for developing Automatic Image Annotation (AIA) methods that are based on the learning by example paradigm. Hashtags can be used on just about any social media platform, but they're most popular on Twitter and Instagram. Using hashtags is essentially a way to group together conversations or content around a certain topic, making it easy for people to find content that interests them. Practically on average, 20% of the Instagram hashtags are related to the actual visual content of the image they accompany, i.e., they are descriptive hashtags, while there are many irrelevant hashtags, i.e., stophashtags, that are used across totally different images just for gathering clicks and for search ability enhancement. Hence in this work, Sorting instagram hashtags all the way through mass tagging using HITS (Hyperlink-Induced Topic Search) algorithm is presented. The hashtags can sorted to several groups according to Jensen-Shannon divergence between any two hashtags. This approach provides an effective and consistent way for finding pairs of Instagram images and hashtags, which lead to representative and noise-free training sets for content-based image retrieval. The HITS algorithm is first used to rank the annotators in terms of their effectiveness in the crowd tagging task and then to identify the right hashtags per image.
KIPS Transactions on Software and Data Engineering
/
v.8
no.1
/
pp.27-36
/
2019
In this paper, we propose a method to find the most similar answer to the user's response from the question-answer database in order to avoid generating a redundant question in retrieval-based automatic question generation system. As a question of the most similar answer to user's response may already be known to the user, the question should be removed from a set of question candidates. A similarity detector calculates a similarity between two answers by utilizing the same words, paraphrases, and sentential meanings. Paraphrases can be acquired by building a phrase table used in a statistical machine translation. A sentential meaning's similarity of two answers is calculated by an attention-based convolutional neural network. We evaluate the accuracy of the similarity detector on an evaluation set with 100 answers, and can get the 71% Mean Reciprocal Rank (MRR) score.
Journal of Information Technology Applications and Management
/
v.27
no.1
/
pp.49-58
/
2020
Lately, a large amount of textual data have been poured out of the Internet and the technology to refine them is needed. Most of these data are long text and often have no title. Therefore, in this paper, we propose a technique to combine the sequence-to-sequence model of RNN and the REINFORCE algorithm to generate the title of the long text automatically. In addition, the TextRank algorithm was applied to extract a summarized text to minimize information loss in order to protect the shortcomings of the sequence-to-sequence model in which an information is lost when long texts are used. Through the experiment, the techniques proposed in this study are shown to be superior to the existing ones.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.26
no.4
/
pp.263-279
/
2022
This paper presents an automatic inspection of defects in semiconductor images. We devise a statistical method to find defects on homogeneous background from the observation that it has a log-normal distribution. If computer aided design (CAD) data is available, we use it to construct a signed distance function (SDF) and change the pixel values so that the average of pixel values along the level curve of the SDF is zero, so that the image has a homogeneous background. In the absence of CAD data, we devise a hybrid method consisting of a model-based algorithm and two neural networks. The model-based algorithm uses the first right singular vector to determine whether the image has a linear or complex structure. For an image with a linear structure, we remove the structure using the rank 1 approximation so that it has a homogeneous background. An image with a complex structure is inspected by two neural networks. We provide results of numerical experiments for the proposed methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.