References
- An, I. S., Kim, H. W., and Kim, H. J., "A User Timeline Summarization Technique using TextRank Algorithm", Journal of KISS: Databases, 2012. 8, pp. 238-245.
- Chopra, S., Auli, M., and Rush, A. M., "Abstractive sentence summarization with attentive recurrent neural networks", Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016, pp. 93-98.
- Haveliwala, T. H., "Topic-sensitive pagerank", Proceedings of the 11th international conference on World Wide Web, ACM, 2002, pp. 517-526.
- Jeong, S. W., Kim, J. T., and Kim, H. S., "Document Summarization Using TextRank Based on Sentence Embedding", Journal of KIISE, 2019. 3, pp. 285-289. https://doi.org/10.5626/jok.2019.46.3.285
- Lee, H. G., Lee, S. H., Kim, J. T., and Kim, H. S., "Generating End-to-End Document Title using Sequence to Sequence Model and Keyword", Korea Information Science Society, 2016. 12, pp. 452-454.
- Mihalcea, R. and Tarau, P., "Textrank: Bringing order into text", Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, 2004, pp. 404-411.
- Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., and Khudanpur, S., "Recurrent neural network based language model", Eleventh Annual Conference of the International Speech Communication Association, 2010.
- Paulus, R., Xiong, C., and Socher, R., "A deep reinforced model for abstractive summarization", arXiv preprint arXiv: 1705.04304, 2017.
- Rush, A. M., Chopra, S., and Weston, J., "A neural attention model for abstractive sentence summarization", arXiv preprint arXiv:1509.00685, 2015.
- Salton, G. and McGill, M. J., "Introduction to modern information retrieval", Mcgraw-Hill, 1983.
- Shin, Y. M., Noh, Y. S., and Park, S. Y., "Abstractive Multi-Document Summarization via Self-Attention based Multi Document Encoder," The Korean Institute of Information Scientists and Engineers, 2019. 6, pp. 527-529.
- Sundermeyer, M., Schlüter, R., and Ney, H., "LSTM neural networks for language modeling", Thirteenth Annual Conference of the International Speech Communication Association, 2012.
- Sutskever, I., Vinyals, O., and Le, Q. V., "Sequence to sequence learning with neural networks", Advances in NIPS, 2014.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Łukasz, K., and Polosukhin, I., "Attention is all you need", Advances in Neural Information Processing Systems, 2017, pp. 5998-6008.
- Williams, R. J. and Zipser, D., "A learning algorithm for continually running fully recurrent neural networks", Neural Computation, Vol. 1, No. 2, 1989, pp. 270-280. https://doi.org/10.1162/neco.1989.1.2.270
- Williams, R. J., "Simple statistical gradient- following algorithms for connectionist reinforcement learning", Machine Learning, Vol. 8, No. 3-4, 1992, pp. 229-256. https://doi.org/10.1007/BF00992696
Cited by
- A Study on Fruit Quality Identification Using YOLO V2 Algorithm vol.9, pp.1, 2020, https://doi.org/10.17703/ijact.2021.9.1.190