Objective: To evaluate the performance of a convolutional neural network (CNN) model that can automatically detect and classify rib fractures, and output structured reports from computed tomography (CT) images. Materials and Methods: This study included 1079 patients (median age, 55 years; men, 718) from three hospitals, between January 2011 and January 2019, who were divided into a monocentric training set (n = 876; median age, 55 years; men, 582), five multicenter/multiparameter validation sets (n = 173; median age, 59 years; men, 118) with different slice thicknesses and image pixels, and a normal control set (n = 30; median age, 53 years; men, 18). Three classifications (fresh, healing, and old fracture) combined with fracture location (corresponding CT layers) were detected automatically and delivered in a structured report. Precision, recall, and F1-score were selected as metrics to measure the optimum CNN model. Detection/diagnosis time, precision, and sensitivity were employed to compare the diagnostic efficiency of the structured report and that of experienced radiologists. Results: A total of 25054 annotations (fresh fracture, 10089; healing fracture, 10922; old fracture, 4043) were labelled for training (18584) and validation (6470). The detection efficiency was higher for fresh fractures and healing fractures than for old fractures (F1-scores, 0.849, 0.856, 0.770, respectively, p = 0.023 for each), and the robustness of the model was good in the five multicenter/multiparameter validation sets (all mean F1-scores > 0.8 except validation set 5 [512 x 512 pixels; F1-score = 0.757]). The precision of the five radiologists improved from 80.3% to 91.1%, and the sensitivity increased from 62.4% to 86.3% with artificial intelligence-assisted diagnosis. On average, the diagnosis time of the radiologists was reduced by 73.9 seconds. Conclusion: Our CNN model for automatic rib fracture detection could assist radiologists in improving diagnostic efficiency, reducing diagnosis time and radiologists' workload.
The objective of this study was to develop automatic event detection algorithm for groundwater level rise. The groundwater level data and rainfall data in July and August at 37 locations nationwide were analyzed to develop the algorithm for groundwater level rise due to rainfall. In addition, the algorithm for groundwater level rise by ice melting and ground freezing was developed through the analysis of groundwater level data in January. The algorithm for groundwater level rise by rainfall was composed of three parts, including correlation between previous rainfall and groundwater level, simple linear regression analysis between previous rainfall and groundwater level, and diagnosis of groundwater level rise due to new rainfall. About 49% of the analyzed data was successfully simulated for groundwater level rise by rainfall. The algorithm for groundwater level rise due to ice melting and ground freezing included graphic analysis for groundwater level versus time (day), simple linear regression analysis for groundwater level versus time, and diagnosis of groundwater level rise by new ice melting and ground freezing. Around 37% of the analyzed data was successfully simulated for groundwater level rise due to ice melting and ground freezing. The algorithms from this study would help develop strategies for sustainable development and conservation of groundwater resources.
테스트 기술자들에게 아날로그 회로(또는 혼합신호 회로)의 테스트와 진단은 여전히 어려운 문제여서 이를 해결할 수 있는 효과적인 테스트 방법이 크게 요구된다. 본 논문에서는 time slot specification(TSS) 기반의 내장 전류감지기(Built-in Current Sensor)를 이용한 새로운 아날로그 회로의 테스트 기법을 제안한다. 또한 TSS에 기반 하여 고장 위치를 찾아내고 고장의 종류를 구별해 내는 방법을 제시한다. TSS 기법과 함께 제안하는 내장 전류감지기는 높은 고장 용이도와 높은 고장 검출을 그리고 아날로그 회로내 강고장과 약고장에 대한 높은 진단율을 갖는다. 제안하는 방법에서는 주출력과 전원단자등을 테스트 포인트로 사용하고 전류감지기를 자동 테스트 장치(Automatic Test Equipment)에 구성하므로써 테스트 포인트 선택과정의 복잡도를 줄일 수 있다. 내장 전류 감지기의 디지털 출력은 아날로그 IC 테스트를 위한 내장 디지털 테스트 모듈과 쉽게 연결된다.
본 연구는 CR영상에서 선량이 화질에 미치는 영향을 평가하기위해 수행되었다. 본 연구의 궁극적인 목적은 임상 흉부진단에 필요한 영상화질을 얻을 수 있는 최적 선량을 찾는 것이다. 영상화질 평가를 위해서 다양한 선량에서의 MTF, NNPS, 그리고 NEQ를 측정하였으며, MTF 측정과 실험장치 구성은 International Electrotechnical Commission(IEC)에서 제시한 절차에 따라 수행하였다. 실험 결과를 통해 흉부진단의 경우 자동노출조절 (Automatic Exposure Control, AEC) 제어반에서 자동으로 설정해주는 선량의 절반 선량으로도 필요한 영상화질이 얻어짐을 알 수 있었다. 본 연구를 통해 AEC에서 제시하는 선량이 최적 선량이 아니며 화질평가를 통해서 얻어진 최적 선량을 사용하면 환자의 피폭을 상당량 줄일 수 있음을 보였다.
본 연구에서는 현대인의 대표적 발 질환 중 하나인 무지외반증의 증상정도 자동 분류 알고리즘 개발에 대한 연구를 수행하였다. 무지외반증의 치료 및 수술을 위한 기존 아날로그적 진단법이 아닌 디지털 영상처리기법을 사용함으로써 효과적인 자동화 진단법을 제시하였다. 이를 위해 본 연구에서는 각각 정상인과 무지외반증 환자의 X-Ray 영상을 이용하였다. 우선 정상인의 X-Ray 영상에 정상 각도를 오버랩과 애드 방법을 통하여 기준각도를 표시한 후, 윤곽선 검출 알고리즘인 로버츠 필터와 세선화 작업을 거쳐 통칭 정상인 기준 영상을 만들었다. 그리고 진단할 환자의 X-Ray 영상에 윤곽선 검출 알고리즘인 소벨 필터를 거쳐 환자 영상을 만들어 앞서 언급한 정상인 기준 영상과 오버랩과 애드 방법을 통하여 디스플레이 출력 영상을 구현하였다. 디스플레이 출력 영상을 이용하여 무지외반증 진단 각도를 측정하여 화면에 디스플레이 함으로써 기존의 아날로그적 진단법에서 탈피한 디지털적 영상처리 진단법을 제시하였으며 그 실용성과 타 정형외적 질환의 응용성을 확인하였다.
1. Objectives: This study is about a development of Sasang constitutional classification algorithm using facial information. 2. Methods: We analysed the datum of middle aged (20~48) women collected by multi-center researchers in 2007. And this study analysed the data of the measurement of the face by 3D-AFRA (3-Dimensional Automatic Face Recognition Apparatus) and the items of impression by SDQ. We used multiple comparison, exploratory discriminant analysis and clinical decision to select optimal 3D facial variables which will be input in discriminant analysis model. And we used univariate F values and stepwise discriminant function analysis to choose best impression variables. 3. Results and Conclusions: In this study, derived discriminant function's explanation power was 39% in female group. Diagnostic accuracy rate was 66.0% in female group. And in test sample, Sasang constitutional diagnostic accuracy rate was 56.9%. In this process we could help improve the objectification of Sasang constitution diagnosis.
Hepatitis is a major public health problem all around the world. This paper proposes an automatic disease diagnosis system for hepatitis based on Genetic Algorithm (GA) Wavelet Kernel (WK) Extreme Learning Machines (ELM). The classifier used in this paper is single layer neural network (SLNN) and it is trained by ELM learning method. The hepatitis disease datasets are obtained from UCI machine learning database. In Wavelet Kernel Extreme Learning Machine (WK-ELM) structure, there are three adjustable parameters of wavelet kernel. These parameters and the numbers of hidden neurons play a major role in the performance of ELM. Therefore, values of these parameters and numbers of hidden neurons should be tuned carefully based on the solved problem. In this study, the optimum values of these parameters and the numbers of hidden neurons of ELM were obtained by using Genetic Algorithm (GA). The performance of proposed GA-WK-ELM method is evaluated using statical methods such as classification accuracy, sensitivity and specivity analysis and ROC curves. The results of the proposed GA-WK-ELM method are compared with the results of the previous hepatitis disease studies using same database as well as different database. When previous studies are investigated, it is clearly seen that the high classification accuracies have been obtained in case of reducing the feature vector to low dimension. However, proposed GA-WK-ELM method gives satisfactory results without reducing the feature vector. The calculated highest classification accuracy of proposed GA-WK-ELM method is found as 96.642 %.
한의학에서 혀의 상태는 인체 내부의 생리적 병리적 변화와 같은 건강 상태를 진단하는 중요한 지표로 활용된다. 혀의 상태를 진단하는 방법(설진)은 편리할 뿐 아니라 비침습적이므로, 한의학에서 널리 활용되고 있다. 하지만, 설진은 광원이나 환자의 자세, 의사의 건강 조건과 같은 검사 환경에 따라 많은 영향을 받는다. 객관적이고 표준화된 진단을 위한 자동 설진 시스템을 개발하기 위하여 촬영된 얼굴 영상으로부터 혀를 영역분할하고 설태를 분류하는 것은 필수적이지만 혀와 입술, 입 근처의 피부색이 서로 유사하므로 쉽지 않은 일이다. 제안된 방법은 전처리 과정과 영역분할, 혀의 구조로부터 발생하는 음영 영역의 지역 최소값 위치 검색, 지역 최소값의 교정, 컬러의 차이를 최대로 하는 위치를 찾는 컬러 경계면 탐색, 척의 기하적인 특성에 일치하는 경계면 선택, 경계면 평활화로 구성되어 있으며, 여기서 전처리 과정은 계산량의 감소를 위한 부 표본화, 히스토그램 평활화, 경계면 강화를 수행한다. 이러한 시스템적인 과정을 거치면, 영역분할된 혀를 획득할 수 있게 된다. 제안된 방법으로 분할된 영역은 초과적으로 혀가 아닌 영역을 제외해 낼 뿐 아니라 정확한 진단을 위해 중요한 정보를 제공함을 한의사의 진단 유효도 평가점수를 통해 확인할 수 있었다. 제안된 방법은 진단의 객관화와 표준화에 기여할 뿐만 아니라 u-Healthcare 시스템에도 활용 가능하다.
냉감을 느끼지 않을만한 온도에서 신체부위에 차가움을 느껴 일상생활이 곤란함을 호소하는 냉증환자가 늘어남에도 불구하고, 정확한 진단기구와 뚜렷한 치료기기가 없는 것이 사실이다. 그러므로 본 논문에서는 다양한 센서를 통하여 냉증을 측정 및 진단하고 환자의 냉증정도에 맞게 적응적으로 산소압과 치료시간을 조정할 수 있는 산소챔버를 냉증치료용 의료기기로 제안 설계한다. 특히 의사의 진찰과 문진을 통해 경험에 의존하던 기존의 주관적인 냉증 진단 방법에서 벗어나, 첨단 복합 생체센서의 측정데이터를 임상실험에 근거한 임계치를 바탕으로 비교함으로써 냉증을 정확히 진단하는 방법을 소개한다. 최종적으로 냉증의 진단 단계에 따라 적응적으로 산소량을 제어함으로써 냉증을 효과적으로 치료하는 산소챔버를 구현하여 한의학 의료기기의 과학화와 대중화에 기여하고자 한다.
Monitoring technology of machining has a long history since unmanned machining was introduced. Despite the long history, many researchers have presented new approaches continuously in this area. Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sound is corrupted by the surrounding work environment. Therefore, the most important part of the diagnosis is to find hidden elements inside the data that can represent the error pattern. This paper presents a feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by tools. The magnitude spectrum of the sound is extracted using the Fourier analysis and the band-pass filter is applied to further characterize the data. Statistical functions are also used as input to the nonlinear classifier for the final response. The results prove that the proposed feature extraction method accurately captures the hidden patterns of the sound generated by the tool, unlike the conventional features. Therefore, it is shown that the proposed method can be applied to a sound based automatic diagnosis system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.