DOI QR코드

DOI QR Code

Assessment of dose effects on image quality at chest computed radiography

흉부 CR 영상에서 선량이 화질에 미치는 영향에 대한 평가

  • Kang, Bo-Sun (Department of Radiological Science, College of Medical Science, Konyang University)
  • Received : 2011.12.01
  • Accepted : 2011.12.22
  • Published : 2011.12.30

Abstract

This research was accomplished to assess dose effects on image quality at computed radiography (CR). The ultimate target of the research was finding optimized exposure that provides necessary image quality for the clinical chest diagnosis. Modulation transfer function (MTF), normalized noise power spectrum (NNPS), and Noise equivalent quanta (NEQ) corresponding to the different doses were measured for the assessment of image quality. The preparation of "edge test device" used in MTF measurement and experimental geometry setup were followed by the recommendations of International Electrotechnical Commission (IEC). The experimental results show the necessary image quality can be achieved even at a half of the automatic exposure control (AEC) setting dose for chest diagnosis. It means that the patient exposure can be reduced dramatically by using optimized dose.

본 연구는 CR영상에서 선량이 화질에 미치는 영향을 평가하기위해 수행되었다. 본 연구의 궁극적인 목적은 임상 흉부진단에 필요한 영상화질을 얻을 수 있는 최적 선량을 찾는 것이다. 영상화질 평가를 위해서 다양한 선량에서의 MTF, NNPS, 그리고 NEQ를 측정하였으며, MTF 측정과 실험장치 구성은 International Electrotechnical Commission(IEC)에서 제시한 절차에 따라 수행하였다. 실험 결과를 통해 흉부진단의 경우 자동노출조절 (Automatic Exposure Control, AEC) 제어반에서 자동으로 설정해주는 선량의 절반 선량으로도 필요한 영상화질이 얻어짐을 알 수 있었다. 본 연구를 통해 AEC에서 제시하는 선량이 최적 선량이 아니며 화질평가를 통해서 얻어진 최적 선량을 사용하면 환자의 피폭을 상당량 줄일 수 있음을 보였다.

Keywords

References

  1. John E. Aldrich, Emerenciana Duran, Pat Dunlop, and John R.Mayo, Optimization of Dose and Image Quality for Computed Radiography and Digital Radiography, J. of Digital Imaging, 19, pp.126-131, (2006). https://doi.org/10.1007/s10278-006-9944-9
  2. J. A. Rowlands, The physics of computed radiography, Phys. Med. Biol. 47, R123-R166, (2002). https://doi.org/10.1088/0031-9155/47/23/201
  3. International Electrotechnical Commission, Diagnostic Imaging Equipment, IEC 62220‐1, (2002).
  4. J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, and D.C. Clark, Med. Phys. 22, 1581 (1995). https://doi.org/10.1118/1.597627
  5. E. Samei, M. J. Flynn and H. G. Chotas, Proc. SPIE 4320, 189 (2001).
  6. J. T. Dobbins III, "Image Quality Metrics for Digital Systemss", in Handbook of Medical Imaging, Physics and Psychophysics, J. Beutel, H. L. Kundel, R. Van Metter, Eds. Bellingham, WA: SPIE, Vol. 1, pp. 121-126, (2000).
  7. www.listem.co.kr
  8. http://www.agfa.com
  9. http://www.elimpex.com/products/diagnostic‐radiology/measuring‐x‐ray/victoreenrad.pdf
  10. A. Badano, R. M. Gagne, B. D. Gallas et. al., Lubberts effect in columnar phosphors, Med. Phys. 31, 3122, (20 https://doi.org/10.1118/1.1796151

Cited by

  1. 시간변화에 따른 영상판의 노이즈 변화 vol.12, pp.2, 2011, https://doi.org/10.7742/jksr.2018.12.2.271