• Title/Summary/Keyword: chest image quality

Search Result 144, Processing Time 0.025 seconds

Comparisons of Image Quality and Entrance Surface Doses according to Care Dose 4D + Care kV in Chest CT (Chest CT에서 Care Dose 4D+Care kV에 따른 화질과 입사표면선량 비교)

  • Kang, Eun-Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • This study compared DLP values along with phantom entrance surface doses and the image quality of chest CT scans made using a Care Dose 4D+Care kV System, scans that are made using only the Care Dose 4D function, and scans that are made with changes made by applying 80 kVp, 100 kVp, 120 kVp, and 140 kVp to the Care Dose 4D and tube voltage to search for methods to maintain the highest image quality with minimal patient doses. It was shown that DLP values decreased 6.727% when scans were taken with Chest Care Dose 4D + Care kV semi 100 and 6.481% when scans were taken with Chest Care Dose 4D + Care kV. With Chest Non as a standard, skin surface doses decreased 16.519% when scans were taken with Chest Care Dose 4D + Care kV semi 100 and 15.705% when scans were taken with Chest Care Dose 4D + Care kV. With comparisons of image quality, when comparisons were made with Chest Non, comparisons made of SNR values and CNR values in all scanning conditions including Care Dose 4D + Care kV showed that there were no significant differences at P>0.05. Imaging using Chest Care Dose 4D + Care kV in chest CT showed that exposure doses decreased similarly to result values gained from the best conditions through manual adjustments of kV and mAS, and there were no significant differences in image SNR and CNR. If the Chest Care Dose 4D + Care kV function is used, image quality is maintained and patient exposure to radiation can be reduced.

Subjective Evaluation of Image Quality on Digital Image Processing of Chest CR Image (CR 영상의 디지털 영상처리에 관한 주관적 화질 평가)

  • Lee, Yong-Gu;Lee, Won-Seok
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.51-56
    • /
    • 2011
  • In this paper, a variety of digital image processing technique was applied to improve the quality of medical images which is a chest CR image. And the image quality was performed. On the other hand, the high-frequency emphasis filtering and the histogram equalization were realized by MATLAB programs to better the contrast of the chest CR image. As a result of simulation, the sharpness of the original image was elevated by the high-frequency emphasis filtering and the histogram equalization. To evaluate the degree which is improved the image quality by the digital image processing, the subjective evaluation is used by the observation of the image. The sensitivity which is the probability to find a signal or a lesion is calculated. The sensitivity of the image performed the high-frequency emphasis filtering and the histogram equalization became more improved than that of the original and the digital image processing performed in the medical image improved the quality of the image.

An Optimal Algorithm for Enhancing the Contrast of Chest Images Using the Frequency Filters Based on Fuzzy Logic

  • Shin, Choong-Ho;Jung, Chai-Yeoung
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.131-136
    • /
    • 2017
  • Chest X-ray image cannot be focused in the same manner as optical lenses and the resultant image generally tends to be slightly blurred. Therefore, appropriate methods to improve the quality of chest X-ray image have been studied in this paper. As the frequency domain filters work well for slight blurring and moderate levels of additive noises, we propose an algorithm that is particularly suitable for enhancing chest image. First, the chest image using Gaussian high pass filter and the optimal high frequency emphasis filter shows improvements in the edges and contrast of the flat areas. Second, as compared to using histogram equalization where each pixel of chest image is characterized by a loss of detail and much noises, in using fuzzy logic, each pixel of chest image shows the detail preservation and little noise.

A Study on the Chest Radiography with Diseases in Consideration of Image Qualify and Patient Exposure (흉부질환의 화질과 피폭을 고려한 촬영조건의 연구)

  • Lee, Man-Koo;Hayashi, Taro;Ishida, Yuji
    • Journal of radiological science and technology
    • /
    • v.20 no.2
    • /
    • pp.56-62
    • /
    • 1997
  • To evaluated the image quality and the patient exposure for the chest radiography, its fundamental imaging properties were investigated. The basic imaging properties were evaluated by measuring characteristic curves, relative speeds, average gradient, and patient exposure dose. The image qualities were evaluated by using a rotating meter. It was found that the film gradient of SRO750/SRH system was 3.13 and that of SRO750/HR-C30 was 1.77. The ratio of SRO1000/TMH to FS/RP-1 was 1 to 18.2. It was possible to visualize the static image when the exposure time was less than 2.5 msec in patient that had respiratory excessive motion, heart beat and natural physical motion, and less than 8.5 msec in normal. The ratio of medical exposure dose compared with our method was 1 to 25 in the routine chest radiography and maximum was 1 to 70. In estimation of the image quality in same cases, we found that the image of SRO1000/SRH and TMH of super sensitive systems was the same results. We found that these super sensitive screen-film systems were available for the chest radiography considering the relationship between the image quality and patient exposure.

  • PDF

Optimization of Image Quality according to Sensitivity and Tube Voltage in Chest Digital Tomosynthesis (디지털 흉부단층합성검사에서 감도와 관전압 변화에 따른 영상 최적화)

  • Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.541-547
    • /
    • 2018
  • To evaluate the effect of dose and image quality for Chest Digital Tomosynthesis(CDT) using sensitivity and tube voltage(kV). CDT images of the phantom were acquired varying sensitivity 200, 320, 400 according to set tube voltage of 125 kV and 135 kV. The dose and Dose Area Product(DAP) according to change of sensitivity and kV were evaluated and Image quality was evaluated by PSNR, CNR, SNR using Image J. Dose were lowered 14~23% less than sensitivity 200, 125 kV and DAP were lowered 13~26% less than sensitivity 200, 125 kV. PSNR were over 27 dB, which were significant value and CNR, SNR were better as sensitivity value was lower. But there were different statistical significant to each item. CNR and SNR were not statistically significant at sensitivity 320, 135 kV(P>0.05). CDT can improve image quality with lower radiation dose using better than quality and correction power at digital radiography system.

An Enhanced Algorithm for an Optimal High-Frequency Emphasis Filter Based on Fuzzy Logic for Chest X-Ray Images

  • Shin, Choong-Ho;Lee, Jung-Jai;Jung, Chai-Yeoung
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.264-269
    • /
    • 2015
  • The chest X-ray image cannot be focused in the same manner that optical lenses are and the resultant image generally tends to be slightly blurred. Therefore, the methods to improve the quality of chest X-ray image have been studied. In this paper, the inherent noises of the input images are suppressed by adding the Laplacian image to the original. First, the chest X-ray image using an Gaussian high pass filter and an optimal high frequency emphasis filter has shown improvements in the edges and contrast of flat areas. Second, using fuzzy logic_histogram equalization, each pixel of the chest X-ray image shows the normal distribution of intensities that are not overexposed. As a result, the proposed method has shown the enhanced edge and contrast of the images with the noise canceling effect.

Assessment of dose effects on image quality at chest computed radiography (흉부 CR 영상에서 선량이 화질에 미치는 영향에 대한 평가)

  • Kang, Bo-Sun
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.6
    • /
    • pp.421-426
    • /
    • 2011
  • This research was accomplished to assess dose effects on image quality at computed radiography (CR). The ultimate target of the research was finding optimized exposure that provides necessary image quality for the clinical chest diagnosis. Modulation transfer function (MTF), normalized noise power spectrum (NNPS), and Noise equivalent quanta (NEQ) corresponding to the different doses were measured for the assessment of image quality. The preparation of "edge test device" used in MTF measurement and experimental geometry setup were followed by the recommendations of International Electrotechnical Commission (IEC). The experimental results show the necessary image quality can be achieved even at a half of the automatic exposure control (AEC) setting dose for chest diagnosis. It means that the patient exposure can be reduced dramatically by using optimized dose.

The Effect of X-ray Tube Potential on the Image Quality of Digital Chest Radiography with an Amorphus Silicon Flat Panel Detectors (비정질 평판형 측정기를 이용한 디지털 흉부 방사선 영상에서의 효과적인 관전압 선택)

  • Kim, Jung-Min;Im, Eun-Kyung
    • Journal of radiological science and technology
    • /
    • v.28 no.4
    • /
    • pp.273-277
    • /
    • 2005
  • The rapid development in digital acquisition technology in radiography has not been accompanied by information regarding optimum radiolographic technique for use with an amorphus silicon flat panel detector. The purpose of our study was to compared image quality and radiation dose of an amorphus silicon flat panel detectors for digital chest radiography. All examinations were performed by using an amorphus silicon flat panel detector. Chest radiographs of an chest phantom were obtained with peak kilovoltage values of $60{\sim}150kVp$. Published data on the effect of x-ray beam energy on image quality and patient dose when using an amorphus silicon flat panel detector. It is important that radiographers are aware of optimum kVp selection for an amorphus silicon flat panel detector system, particularly for the commonly performed chest examination.

  • PDF

Comparison of Quality Control for Chest Radiography between Special Examination and Medical Institution for Pneumoconiosis (진폐 정밀/요양기관과 요양기관의 흉부 방사선분야 정도관리 비교)

  • Lee, Won-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.2
    • /
    • pp.322-330
    • /
    • 2011
  • To compare of quality control for chest radiography between special examination (SEP) and medical institution for pneumoconiosis (MIP). For the first time, we had visited at 33 institutions (SEP; 17 institutions, MIP; 16 institutions) to evaluate the quality control of chest radiography which is used in diagnosis of patients with pneumoconiotic complications. Image quality was rated by two experienced chest radiologists, and evaluated for radiological technique (RT), reading environment (RE) and image quality (IQ) between SEP and MIP according to the guideline published by OSHRI. Generator capacity, used duration and modality of chest radiography equipment were not signigicant difference between SEP and MIP, but there were signigicant difference in tube voltage and grid ratio used for chest radiography except to tube current and exposure time. SEP was statistically significant higher in RT (71.2 vs. 54.5, p=0.015), RE (78.8 vs. 51.5, p=0.007) to MIP, but not significant difference in IQ (64.8 vs. 59.3, p=0.180). For reliable and precisional diagnosis of patients with pneumoconiotic complications, the MIP requires the evaluation and education of quality control for improving chest radiography.

The Evaluation of CR and DDR chest image using ROC analysis (ROC평가 방법을 이용한 CR과 DDR 흉부 영상의 비교)

  • Park, Yeon-Ok;Jung, Eun-Kyung;Park, Yeon-Jung;Nam, So-Ra;Jung, Ji-Young;Kim, Hee-Joung
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • ROC(Receiver Operating Characteristic)curve is the method that estimate detected insignificant signal from the human's sense of sight, it has been raised excellent results. In this study, we evaluate image quality and equipment character by obtaining a chest image from CR(Computed Radiography) and DDR(Direct Digital radiography) using the human chest phantom, The parameter of exposure for obtaining chest image was 120 kVp/3.2 mAs and the SID(Source to Image Distance) was 180cm. The images were obtained by CR(AGFA MD 4.0 General plate, JAPAN) and DDR(HOLOGIC nDirect Ray, USA). Using some pieces of Aluminum and stone for expressing regions, then attached them on the heart, lung and thoracic vertebrae of the phantom. 29 persons hold radiology degrees were participated in ROC analysis. As a result of the ROC analysis, TPF(true positive fraction) and FPF(false positive fraction) of DDR and CR are 0.552 and 0.474 and 0.629 and 0.405, respectively. By using the results, the ROC curve of CR has higher image quality than DDR. According to the theory, DDR has the higher image quality than CR in chest X-ray image. But, CR has the higher image quality than DDR. quality of DDR inserted the enhance board. The results confirmed that image post-processing is important element decipherment of clinical.

  • PDF