• 제목/요약/키워드: Automatic ROI extraction

검색결과 17건 처리시간 0.024초

JPEG2000 이미지의 에지 분포를 이용한 ROI 마스크 생성과 자동 관심영역 추출 (A Generation of ROI Mask and An Automatic Extraction of ROI Using Edge Distribution of JPEG2000 Image)

  • 서영건;김희민;김상복
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권4호
    • /
    • pp.583-593
    • /
    • 2015
  • 오늘날 컴퓨터와 통신 기술의 발달로 멀티미디어(이미지 데이터)는 다양한 응용 분야에서 사용되고 있다. 여기에 가장 널리 사용되고 있는 JPEG2000는 관심영역(ROI) 기술을 제공한다. ROI의 추출은 사용자에게 우선적으로 보여져야 하기 때문에 빠르게 수행되어야 하고 큰 이미지에서 자동적으로 추출되어야 한다. 이를 위해, 본 연구는 JPEG2000의 코드 블록 내에 있는 에지 분포를 이용하여 ROI의 자동 추출과 우선적 처리에 관한 방법을 제안한다. 먼저 에지 추출을 위한 처리와, 다음으로 에지 정보를 이용해 ROI를 자동적으로 추출한다. 그리고, 추출된 ROI 블록을 이용하여 ROI를 그룹핑 하고, ROI 블록의 마스크를 생성한다. 이후에는 양자화를 하고 우선적 처리를 하는 ROI 코딩을 하고 EBCOT를 실행한다. 제안 방법의 유효성을 보이기 위하여 JPEG2000에서 사용되는 다른 ROI 추출 기법들과 비교하고 ROI 코딩을 하지 않는 기법과 ROI 코딩이 포함된 기법 간의 PSNR을 평가하여 품질을 비교한다.

JPEG2000에서 ROI의 자동 추출과 우선적 처리 (Automatic Extraction and Preferred Processing of ROI in JPEG2000)

  • 박재흥;서영건;김상복;강기준;김호용
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권6호
    • /
    • pp.127-136
    • /
    • 2008
  • 디지털화된 영상은 실재로 개인에게 보이기 위해서는 압축, 저장또는 전송 과정을거친다. 이 과정에서 사용자는 영상의 특정 부분을 먼저 볼 수도 있으며, 시스템의 특성에 따라 또는 영상의 해상도가 아주 큰 경우에 영상이 사용자에게 보이는 데 다소 시간이 걸릴 수 있다. 이 때, 사용자가 원하는 부분을 먼저 보이게 하고, 나머지 부분을 보이게 한다면 좋을 것이다. 이를 위해 JPEG2000에는 관심영역(ROI)으로 제공하고 있다. ROI의 추출은 사용자가 임의로 지정할 수 있으면 가장 좋겠지만, 모든 영상에 사람이 관여할 수 있는 것은 아니다. 영상이 아주 많은 경우에는 자동으로 ROI를 추출하여 저장해야 될 필요가 있으며, ROI 없이 압축, 저장되어 있다면 전송 시에 ROI를 자동 추출하여 전송해야 한다. 본 연구에서는 ROI를 자동 추출하여 ROI 마스크를 생성하여 마스킹 된 부분의 영상만 우선적으로 전송하고 나머지 부분을 전송하는 방법을 제안하고, ROI 처리가 되지 않은 전송 기법과 비교 실험한다.

  • PDF

낮은 피사계 심도 JPEG2000 이미지를 위한 자동 관심영역 추출기반의 개선된 동적 관심영역 코딩 방법 (A Revised Dynamic ROI Coding Method Based On The Automatic ROI Extraction For Low Depth-of-Field JPEG2000 Images)

  • 박재흥;김현주;심종채;유창열;서영건;강기준
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권10호
    • /
    • pp.63-71
    • /
    • 2009
  • 본 논문에서는 낮은 피사계 심도 JPEG2000 이미지의 복원 과정에서 관심영역을 자동으로 추출하여 우선적 처리하는 개선된 동적 관심영역 코딩 방법을 제안한다. 제안한 방법은 기존 방법과는 달리 사용자의 관심영역 지정 과정을 거치지 않고, DWT(Discrete Wavelet Transform)에서 특정 레벨의 고주파 서버 밴드를 사용하여 에지 마스크 정보를 생성한 후에 자동 에지 코드 블록 판별 알고리즘을 사용하여 관심영역을 빠르게 처리한다. 이 알고리즘은 에지 임계값과 4 방향(동, 서, 남, 북)으로 코드 블록 단위의 에지 마스크 정보를 이용하여 에지 코드 블록을 판별한다. 본 알고리즘을 기존의 Implicit 방법에 적용하여 실험한 결과, 제안한 방법이 기존의 방법들에 비해 속도와 품질 면에 있어서 우수함을 확인하였다.

소포 자동식별을 위한 바코드 관심영역 고속 추출에 관한 연구 (A Study on High-Speed Extraction of Bar Code Region for Parcel Automatic Identification)

  • 박문성;김진석;김혜규;정회경
    • 정보처리학회논문지D
    • /
    • 제9D권5호
    • /
    • pp.915-924
    • /
    • 2002
  • 현재, 컨베이어 벨트 시스템에 소포를 적재하고, 우편번호를 입력하여 구분한다. 구분된 소포 중에서 기록관리 대상의 경우에는 바코드를 판독하여 처리하고 있다. 본 논문에서는 2m/sec 이내로 이송되는 소포를 라인 CCD(Charged Coupled Device) 카메라를 통해 이미지를 획득(4,096$\times$4,096)한 후, 바코드 ROI(Region of Interest)의 추출을 위해 32$\times$32 크기의 미세블록의 검사방법을 적용하였다. ROI 추출 단계는 미세블록(128$\times$128)들의 최대 및 최소값의 차이 분포를 이용하여 컨베이어 벨트 영역과 소포의 바탕면은 제거하였다. 그리고 문자열과 바코드 영역을 검출하기 위해 대각선(diagonal) 검사방법을 사용하였으며, 바코드 ROI 만을 분리하기 위해 미세블록의 중앙에 5개의 수평라인으로 스캔하여 에지 수와 크기에 대한 변화량을 검사하였다. 검출된 영역 중에서 잘못 검출된 영역을 그룹의 라벨링 과정에서 그룹의 크기를 비교하여 제거하였다. 미세블록 검사과정에서 누락된 바코드 영역을 보정하고 바코드의 정보 해석을 위해 추출된 ROI의 외곽좌표들과 기울기 분포를 이용하여 중심 축 라인과 ROI 영역의 기울기에 따라 중심축을 보정하는 방법 등을 적용하였다. 이와 같은 방법에 의해 바코드의 ROI 추출과 중심축 생성은 60~180msec이내에 가능하게 되었으며, ROI 추출의 정확도는 99.44% 이상이 달성되었다.

다중 관심영역의 자동 추출 및 부호화 방법 (Automatic Extraction and Coding of Multi-ROI)

  • 서영건;홍도순;박재흥
    • 디지털콘텐츠학회 논문지
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2011
  • JPEG2000에서는 영상에서 원하는 영역을 타 영역(배경)보다 고화질로 압축하는 기법인, 관심영역 부호화 방법을 제공하고 있는데, 본 연구에서는 얼굴이 포함된 영상을 이용하여, 얼굴 영역이 가장 우선적으로 처리되고 높은 품질로 압축되도록 부가 서비스를 제공한다. 제안 기법은 크게 두 단계로 구성된다. 첫 번째는 얼굴 추출 단계이고, 두 번째는 관심영역 부호화 단계이다. 얼굴 추출은 영상의 모든 화소에 대해 $20{\times}20$ 윈도우 화소 크기로 자르거나 축소하여 전처리 과정을 거친 후 신경망을 이용하여 인식한다. 추출된 각 영역은 관심영역 마스크로 표시되고, Maxshift 방식을 이용하여 부호화된다. 이후에 EBCOT 과정을 거처 압축 및 저장된다. 기존의 방법은 고주파 성분의 분포에 의해 관심영역을 찾은 후 부호화하는 방법이 많이 연구되었다. 반면에 본 연구는 인간의 인지 능력을 이용하여, 여러 개의 얼굴이 포함된 영상에서 충분히 유용한 기법임을 보인다.

Development of a Software Program for the Automatic Calculation of the Pulp/Tooth Volume Ratio on the Cone-Beam Computed Tomography

  • Lee, Hoon-Ki;Lee, Jeong-Yun
    • Journal of Oral Medicine and Pain
    • /
    • 제41권3호
    • /
    • pp.85-90
    • /
    • 2016
  • Purpose: The aim of this study was to develop an automated software to extract tooth and pulpal area from sectional cone-beam computed tomography (CBCT) images, which can guarantee more reproducible, objective and time-saving way to measure pulp/tooth volume ratio. Methods: The software program was developed using MATLAB (MathWorks). To determine the optimal threshold for the region of interest (ROI) extraction, user interface to adjust the threshold for extraction algorithm was added. Default threshold was determined after several trials to make the outline of extracted ROI fitting to the tooth and pulpal outlines. To test the effect of starting point location selected initially in the pulpal area on the final result, pulp/tooth volume ratio was calculated 5 times with different 5 starting points. Results: Navigation interface is composed of image loading, zoom-in, zoom-out, and move tool. ROI extraction process can be shown by check in the option box. Default threshold is adjusted for the extracted tooth area to cover whole tooth including dentin, cementum, and enamel. Of course, the result can be corrected, if necessary, by the examiner as well as by changing the threshold of density of hard tissue. Extracted tooth and pulp area are reconstructed three-dimensional (3D) and pulp/tooth volume ratio is calculated by voxel counting on reconstructed model. The difference between the pulp/tooth volume ratio results from the 5 different extraction starting points was not significant. Conclusions: In further studies based on a large-scale sample, the most proper threshold to present the most significant relationship between age and pulp/tooth volume ratio and the tooth correlated with age the most will be explored. If the software can be improved to use whole CBCT data set rather than just sectional images and to detect pulp canal in the original 3D images generated by CBCT software itself, it will be more promising in practical uses.

임의의 ROI를 포함하는 JPEG2000 이미지의 ROI 코딩 기법 (An ROI Coding Technique of JPEG2000 Image Including Some Arbitrary ROI)

  • 홍석원;김상복;서영건
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권11호
    • /
    • pp.31-39
    • /
    • 2010
  • 이미지를 사용하는 영상처리 시스템이나, 단순하게 특정 이미지를 보기를 원하는 일반 사용자에게 한 이미지 내에 특정 부분을 타 영역보다 높은 품질을 갖도록 한다면, 더 좋은 서비스를 제공할 수 있을 것이다. 특히 모바일 환경에서는 화면의 크기가 작으므로 우선적으로 보여야 될 부분이 필요하게 되었다. JPEG2000에서는 이러한 기능을 지원하고 있다. 하지만 구체적인 영역 추출 과정이나 서비스 기능은 없지만, 추가로 기능을 넣을 수 있도록 제공하고 있는데, 이것을 ROI(Region-of-Interest) 기법이라 한다. 본 논문에서는 인물이 포함된 이미지를 이용하여, 얼굴 영역이 가장 우선적으로 처리되고 높은 품질로 압축되도록 부가 서비스를 제공하는 것이다. 하나의 이미지가 사용자에게 서비스되기 전에 압축되고 저장되어야 하는데, 얼굴 영역은 배경 영역 보다 더 좋은 품질로 압축되고 배경은 품질을 상대적으로 떨어뜨리는 것이다. 전송될 때도 얼굴 영역은 우선적으로 전송하여 사용자에게는 훨씬 좋은 서비스를 제공할 수 있다. 또한 압축은 일반적인 방법으로 하고, 전송될 때 얼굴영역을 찾아 우선적으로 전송해도 된다. 얼굴영역 추출은 신경망 기반의 얼굴 검출 기법을 사용하고, 우선 처리는 JPEG2000의 EBCOT 기법을 사용한다. 실험은 여러 개의 얼굴이 포함된 이미지를 사용하며, 객관적인 평가와 주관적인 평가를 실시하며, 충분히 좋은 기법으로 증명되었다.

고속 이진화 영상처리를 이용한 관심영역 추출 알고리즘 (Algorithm for Extract Region of Interest Using Fast Binary Image Processing)

  • 조영복;우성희
    • 한국정보통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.634-640
    • /
    • 2018
  • 본 논문에서는 방사선 영상을 기반으로 관심 영역의 자동 추출 알고리즘을 제안한다. 제안 알고리즘은 입력 영상에서 병변부위를 검출하기 위해 세그먼테이션, 특징 추출 및 참조 이미지 매칭을 이용한다. 추출된 영역은 참조 DB에서 일치하는 병변 이미지를 검색하고, 일치된 결과는 칼만 필터 기반의 적합성 피드백을 이용해 병변을 자동 추출한다. 제안 알고리즘은 왼손 x-ray 입력 영상을 기반으로 성장판을 추출하기 위해 왼손 이미지의 윤곽선을 추출하고, 이것은 다중 스케일 해시안 행렬 기반의 세션화를 이용해 후보 영역을 생성 한다. 그 결과, 제안 알고리즘은 관심영역 분할 단계에서는 0.02초로 빠른 분할이 가능하였고, 분할 영상을 기준으로 ROI 추출시 평균 0.53, 강화 단계에서는 0.49초로 매우 정확한 이미지 분할이 가능한 것을 실험을 통해 알 수 있었다.

원격 자동 검침을 위한 효과적인 계량기 숫자 분할 (An Efficient Numeric Character Segmentation of Metering Devices for Remote Automatic Meter Reading)

  • 보반 토안;정선태;조성원
    • 한국멀티미디어학회논문지
    • /
    • 제15권6호
    • /
    • pp.737-747
    • /
    • 2012
  • 최근 들어, 기존 계량기에서의 원격 자동 검침을 지원하기 위한 영상 기반 계량기 데이터 숫자 인식에 대한 관심이 증대되고 있다. 성공적인 숫자 인식을 달성하는 데 숫자 분할은 매우 중요한 과정이다. 본 논문에서는 다양한 조명하의 다양한 계량기들에 대해서 잘 수행되는 효과적인 계량기 숫자 분할 방법을 제안한다. 제안된 계량기 숫자 분할 방법은 먼저 계량기 전체 숫자 영역을 정교한 관심영역으로 검출하고, 이후 검출된 관심영역에서 각 숫자를 분할하는 2단계로 구성된다. 정교한 관심영역 검출은 조명 개선 전처리 후에 수평 라인 세그먼트를 이용한 개략적 관심영역 추출, 이진화후 수직 및 수평 투영을 이용한 클리핑을 통한 개략 관심영역 정교화 등의 과정으로 처리된다. 검출된 관심영역에서의 숫자 분할은 '숫자 구역 수직 분할' 및 '수직 분할된 각 숫자 구역에서의 숫자 분할' 등의 2개 과정을 통해 안정적으로 분할되도록 처리된다. 저대비, 저저도, 음영, 포화 등 다양한 조명 환경하의 다양한 계량기 종류에 대해 직접 촬영하여 자체 제작한 계량기 이미지 데이터베이스에 기반한 실험을 통해 본 논문에서 제안한 숫자 분할 방법을 평가하고, 제안방법이 다양한 조명 환경하의 다양한 계량기 타입에 대해서 계량기 숫자를 효과적으로 잘 분할함을 확인하였다.

피사계 심도가 낮은 이미지에서 웨이블릿 기반의 자동 ROI 추출 및 마스크 생성 (An Automatic ROI Extraction and Its Mask Generation based on Wavelet of Low DOF Image)

  • 박순화;서영건;이부권;강기준;김호용;김형준;김상복
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권3호
    • /
    • pp.93-101
    • /
    • 2009
  • 본 논문에서는 웨이블릿 변환 된 고주파 서브밴드들의 에지 정보를 이용하여 관심 객체 영역을 고속으로 자동 검출해주는 새로운 알고리즘을 제안하였다. 제안된 방법에서는 에지정보를 이용하여 블록단위의 4-방향 객체 윤곽탐색 알고리즘(4-DOBS)을 수행하여 관심객체를 검출한다. 전체 이미지는 $64{\times}64$또는 $32{\times}32$ 크기의 코드 블록으로 먼저 나누어지고, 각 코드 블록 내에 에지들이 있는지 없는지에 따라 관심 코드블록 또는 배경이 된다. 4-방향은 바깥쪽에서 이미지의 중앙으로 탐색하고, 피사계 심도가 낮은 이미지는 중앙으로 갈수록 에지가 발견된다는 특징을 이용한다. 에지를 모두 발견하면 내부의 이미지 블록은 모두 관심영역으로 간주하고, 이 블록들은 빠르게 마스킹되어 서버로 전송되어 동적 ROI를 제공한다. 이는 기존 방법들의 문제점이였던 복잡한 필터링 과정과 영역병합 문제로 인한 높은 계산 복잡도를 상당히 개선시킬 수 있었고, 블록 단위의 처리로 인하여 실시간 처리를 요하는 응용에서도 적용 가능하였다.