• Title/Summary/Keyword: Automatic ROI

Search Result 71, Processing Time 0.022 seconds

Automatic Extraction and Preferred Processing of ROI in JPEG2000 (JPEG2000에서 ROI의 자동 추출과 우선적 처리)

  • Park, Jae-Heung;Seo, Yeong-Geon;Kim, Sang-Bok;Kang, Ki-Jun;Kim, Ho-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.127-136
    • /
    • 2008
  • A digitized image passes by encoding, storing or transmitting to show it to users. In this process, may be users would want to see a specific region of the image. And depending on the system features or in the case that the resolution of the image is large, it will take a huge time that the image show to the users. In this time, it will be resonable that the part users want to see shows earlier and afterward the other parts show. For this, JPEG2000 standards provide ROI. Although ROI extraction that users specify ROI arbitrarily is the best, people not always participate in doing all the images. There needs an automatic ROI extracting and storing in some images. JPEG2000 should extract and send an ROI automatically when the images is encoded without ROI. This study proposes a method that automatically extracts an ROI, makes the ROI masks, transfers the masked image preferentially and the background. And the study compares and experiments the proposed method and the method not having ROI.

  • PDF

Research on Changing of Renal Relative Uptake Depending on the Setting of Background ROI in Kidney MAG3 Study of Hydronephrosis Patients (Hydronephrosis 환자의 Kidney MAG3 검사 시 Background ROI 설정에 따른 신장 상대 섭취율 변화에 관한 연구)

  • Noh, Ik Sang;Ahn, Byung Ho;Kim, Soo Yung;Choi, Sung Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.25-30
    • /
    • 2013
  • Purpose: To evaluate kidney function, renal relative uptake is very important and is affected by kidney and the setting of background region of interest (ROI). In particular, in the case of patients with hydronephrosis to the naked eyes, such as size, position and shape etc. can be difficult to identify. So according to ROI to be set by user, the results are many differences. This study assumes the ROI of a constant kidney. According to the change of background ROI by analyzing renal relative uptake affect how the results are intended to study. Materials and Methods: From January 2012 to February 2013, we analyzed 27 patients with hydronephrosis who were examined MAG3 test in nuclear medicine department of Samsung medical center. After patients were received intravenous injection of $^{99m}Tc-MAG3$ 185 MBq (5 mCi) data were obtained. While we reconstructed images of patients, we've changed background ROI in the process of setting up ROI. First, in the process of renal processing, automatic ROI which set automatically and background ROI which needed to set manually were compared. Second, we set the ROI position separated by above, lateral and bottom of kidney. Third, background setting time were compared with 1-2 min and 2-3 min. Results: The relative uptake occurred in 3.7%p of the errors on average in Automatic & Manual ROI study. And comparison of background ROI position study, located in the lower position was more accurate results. Above, lateral, bottom each of the values 74.6%, 67.6% and 62.0% showed respectively. The standard value was 59.9%. finally, split function range test doesn't show significant difference. Conclusion: The study shows that relative uptake of kidney is affected in the background ROI. Therefore, it should be set by considering various dependent factors.

  • PDF

A Generation of ROI Mask and An Automatic Extraction of ROI Using Edge Distribution of JPEG2000 Image (JPEG2000 이미지의 에지 분포를 이용한 ROI 마스크 생성과 자동 관심영역 추출)

  • Seo, Yeong Geon;Kim, Hee Min;Kim, Sang Bok
    • Journal of Digital Contents Society
    • /
    • v.16 no.4
    • /
    • pp.583-593
    • /
    • 2015
  • Today, caused by the growth of computer and communication technology, multimedia, especially image data are being used in different application divisions. JPEG2000 that is widely used these days provides a Region-of-Interest(ROI) technique. The extraction of ROI has to be rapidly executed and automatically extracted in a huge amount of image because of being seen preferentially to the users. For this purpose, this paper proposes a method about preferential processing and automatic extraction of ROI using the distribution of edge in the code block of JPEG2000. The steps are the extracting edges, automatical extracting of a practical ROI, grouping the ROI using the ROI blocks, generating the mask blocks and then quantization, ROI coding which is the preferential processing, and EBCOT. In this paper, to show usefulness of the method, we experiment its performance using other methods, and executes the quality evaluation with PSNR between the images not coding an ROI and coding it.

Automatic Liver Segmentation of a Contrast Enhanced CT Image Using an Improved Partial Histogram Threshold Algorithm

  • Seo Kyung-Sik;Park Seung-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.171-176
    • /
    • 2005
  • This paper proposes an automatic liver segmentation method using improved partial histogram threshold (PHT) algorithms. This method removes neighboring abdominal organs regardless of random pixel variation of contrast enhanced CT images. Adaptive multi-modal threshold is first performed to extract a region of interest (ROI). A left PHT (LPHT) algorithm is processed to remove the pancreas, spleen, and left kidney. Then a right PHT (RPHT) algorithm is performed for eliminating the right kidney from the ROI. Finally, binary morphological filtering is processed for removing of unnecessary objects and smoothing of the ROI boundary. Ten CT slices of six patients (60 slices) were selected to evaluate the proposed method. As evaluation measures, an average normalized area and area error rate were used. From the experimental results, the proposed automatic liver segmentation method has strong similarity performance as the MSM by medical Doctor.

Human-Data Interface : Interface to Accelerate Information Retrieval via Automatic Scroll in Data (사용자-데이터 인터페이스 : 데이터에서 자동 스크롤을 통한 정보 검색 가속화 인터페이스)

  • Choe, Minki;Park, JungWoo;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.273-276
    • /
    • 2021
  • 본 논문에서는 사용자의 관심영역(Region of interests, ROI)를 기반 스크롤을 통해 데이터를 좀 더 빠르고 효율적으로 검색할 수 있는 사용자-데이터 인터페이스를 제안한다. 사용자가 관심있는 정보나 콘텐츠를 찾는 행동에서 착안한 우리의 접근 방식은 주어진 콘텐츠에서 ROI를 효율적으로 계산하고, GMM(Gaussian mixture model, 가우시안 혼합 모델)에서 착안해 개발한 커널을 기반으로 사용자가 관심 있어 하는 정보의 위치로 부드럽고 빠르게 화면을 이동시켜 정보를 탐색한다. 과정을 설명하기 앞서, 다수의 ROI가 있을 때 스크롤의 현 위치는 항상 두 ROI의 사이에 있다. 그 두 사이의 거리가 가장 짧은 두 ROI에 각각 우리의 커널을 적용하면 현 위치에서 스크롤 가속에 적용 가능한 두 개의 관성이 생긴다. 여기에 선형 보간법(Linear interpolation)을 적용하여 한층 부드러운 하나의 관성으로 만들고, 이것을 스크롤에 적용한다. 결과적으로, 오직 사용자의 입력에 따라 정보가 검색되는 기존의 접근법과는 달리, ROI와 DOI(Degree of interests, 중요도)를 기반으로 향상된 스크롤을 통해 사용자가 관심 있어 하는 정보나 콘텐츠를 보다 쉽게 직관적으로 찾아줄 수 있기 때문에 사용자는 탐색 시간을 절약할 수 있다.

  • PDF

A Revised Dynamic ROI Coding Method Based On The Automatic ROI Extraction For Low Depth-of-Field JPEG2000 Images (낮은 피사계 심도 JPEG2000 이미지를 위한 자동 관심영역 추출기반의 개선된 동적 관심영역 코딩 방법)

  • Park, Jae-Heung;Kim, Hyun-Joo;Shim, Jong-Chae;Yoo, Chang-Yeul;Seo, Yeong-Geon;Kang, Ki-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.63-71
    • /
    • 2009
  • In this study, we propose a revised dynamic ROI (Region-of-Interest) coding method in which the focused ROI is automatically extracted without help from users during the recovery process of low DOF (Depth-of-Field) JPEG2000 image. The proposed method creates edge mask information using high frequency sub-band data on a specific level in DWT (Discrete Wavelet Transform), and then identifies the edge code block for a high-speed ROI extraction. The algorithm scans the edge mask data in four directions by the unit of code block and identifies the edge code block simply and fastly using a edge threshold. As the results of experimentation applying for Implicit method, the proposed method showed the superiority in the side of speed and quality comparing to the existing methods.

Comparison of Visual- and Automatic Coregistration with MR Template based ROI Methods for Measurement of Specific Striatal Binding Ratio (SBR) in I-123 IPT SPECT

  • 주라형;서태석;최보영;이형구;김재승;문대혁
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.107-107
    • /
    • 2002
  • 목적: I-123 IPT SPECT에서 striatum에 ROI를 설정하여 Strial Binding Ratio를 측정하기 위해 사용되는 육안적인 방법과 MR Template based Coregistration 방법을 비교 평가하였다. 대상 및 방법: 파킨슨씨병 환자(IPD) 15명(남/녀:8/7, 63.3$\pm$4.8세)과 정상인 8명(남/녀:2/6, 61.4$\pm$16.5세) 에서 I-123 IPT(259MBq)를 주사한 후 2시간에 SPECT 영상을 얻었고 미상핵과 조가비핵의 전, 후부 및 후두엽에 각각 육안적인 방법과 MR Template based Coregistration방법으로 ROI를 설정하였다. MR Template based Coregistration 방법은 MNI TIMR template을 이용하여 SPECT영상을 voxel based intensity matching 방법으로 coregistration한 후midthalamic level에서 striatum의 경계를 따라 설정된 ROI를 이용하였다. 육안적인 방법은 striatal uptake가 가장 높은 level에서 3개의 ROI template를 striatum에 위치하였다. 두 방법으로 SBR과 nnterior/posterior ratio of SBR(APR)를 측정하였고 정상인과 파킨슨씨병 환자에서 두 방법을 비교하였다.

  • PDF

A Study on High-Speed Extraction of Bar Code Region for Parcel Automatic Identification (소포 자동식별을 위한 바코드 관심영역 고속 추출에 관한 연구)

  • Park, Moon-Sung;Kim, Jin-Suk;Kim, Hye-Kyu;Jung, Hoe-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.915-924
    • /
    • 2002
  • Conventional Systems for parcel sorting consist of two sequences as loading the parcel into conveyor belt system and post-code input. Using bar code information, the parcels to be recorded and managed are recognized. This paper describes a 32 $\times$ 32 sized mini-block inspection to extract bar code Region of Interest (ROI) from the line Charged Coupled Device (CCD) camera capturing image of moving parcel at 2m/sec speed. Firstly, the Min-Max distribution of the mini-block has been applied to discard the background of parcel and region of conveying belts from the image. Secondly, the diagonal inspection has been used for the extraction of letters and bar code region. Five horizontal line scanning detects the number of edges and sizes and ROI has been acquired from the detection. The wrong detected area has been deleted by the comparison of group size from labeling processes. To correct excluded bar code region in mini-block processes and for analysis of bar code information, the extracted ROI 8 boundary points and decline distribution have been used with central axis line adjustment. The ROI extraction and central axis creation have become enable within 60~80msec, and the accuracy has been accomplished over 99.44 percentage.

A Mark Automatic Checking System to Inspect Character Strings on Chips (칩의 문자들을 검사하기 위한 마크 자동 검사 시스템)

  • Joo, Ki-See
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.191-196
    • /
    • 2005
  • The character strings on chips and components are so tiny and numerous that it is a very difficult work for people to perform. In paper, this we propose a mark automatic checking system, which will determine whether chip is wrong-mark or not by recognizing characters on chips. Lots of faulty detection conditions and template matching methods are used to inspect the faulty mark items. The faulty detection classifies conditions as five kinds-darkness, matching, area, broken and branch. A series of experimentation shan that the method proposed here am offer an effective way to determine wrong-mark on chips.

  • PDF

A Target Segmentation Method Based on Multi-Sensor/Multi-Frame (다중센서-다중프레임 기반 표적분할기법)

  • Lee, Seung-Youn
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.445-452
    • /
    • 2010
  • Adequate segmentation of target objects from the background plays an important role for the performance of automatic target recognition(ATR) system. This paper presents a new segmentation algorithm using fuzzy thresholding to extract a target. The proposed algorithm consists of two steps. In the first step, the region of interest(ROI) including the target can be automatically selected by the proposed robust method based on the frame difference of each image sensor. In the second step, fuzzy thresholding with a proposed membership function is performed within the only ROI selected in the first step. The proposed membership function is based on the similarity of intensity and the adjacency of target area on each image. Experimental results applied to real CCD/IR images show a good performance and the proposed algorithm is expected to enhance the performance of ATR system using multi-sensors.