• Title/Summary/Keyword: Automatic Information Extraction

Search Result 592, Processing Time 0.031 seconds

Automatic Extraction of Component Collaboration in Java Web Applications by Using Servlet Filters and Wrappers (자바 웹 앱에서 서블릿 필터와 래퍼를 이용한 컴포넌트 협력 과정 자동 추출 기법)

  • Oh, Jaewon;Ahn, Woo Hyun;Kim, Taegong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.7
    • /
    • pp.329-336
    • /
    • 2017
  • As web apps have evolved faster and become more complex, their validation and verification have become essential for their development and maintenance. Efficient validation and verification require understanding of how web components collaborate with each other to meet user requests. Thus, this paper proposes a new approach to automatically extracting such collaboration when a user issues a request for a new page. The approach is dynamic and less sensitive to web development languages and technologies, compared to static extraction approaches. It considers an orignal web app as a black-box and does not change the app's behavior. The empirical evaluation shows that our approach can be applicable to extract component collaboration and understand the behavior of open source web apps.

Enhancing Performance of Bilingual Lexicon Extraction through Refinement of Pivot-Context Vectors (중간언어 문맥벡터의 정제를 통한 이중언어 사전 구축의 성능개선)

  • Kwon, Hong-Seok;Seo, Hyung-Won;Kim, Jae-Hoon
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.7
    • /
    • pp.492-500
    • /
    • 2014
  • This paper presents the performance enhancement of automatic bilingual lexicon extraction by using refinement of pivot-context vectors under the standard pivot-based approach, which is very effective method for less-resource language pairs. In this paper, we gradually improve the performance through two different refinements of pivot-context vectors: One is to filter out unhelpful elements of the pivot-context vectors and to revise the values of the vectors through bidirectional translation probabilities estimated by Anymalign and another one is to remove non-noun elements from the original vectors. In this paper, experiments have been conducted on two different language pairs that are bi-directional Korean-Spanish and Korean-French, respectively. The experimental results have demonstrated that our method for high-frequency words shows at least 48.5% at the top 1 and up to 88.5% at the top 20 and for the low-frequency words at least 43.3% at the top 1 and up to 48.9% at the top 20.

Sound Monitoring System of Machining using the Statistical Features of Frequency Domain and Artificial Neural Network (주파수 영역의 통계적 특징과 인공신경망을 이용한 기계가공의 사운드 모니터링 시스템)

  • Lee, Kyeong-Min;Vununu, Caleb;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.837-848
    • /
    • 2018
  • Monitoring technology of machining has a long history since unmanned machining was introduced. Despite the long history, many researchers have presented new approaches continuously in this area. Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sound is corrupted by the surrounding work environment. Therefore, the most important part of the diagnosis is to find hidden elements inside the data that can represent the error pattern. This paper presents a feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by tools. The magnitude spectrum of the sound is extracted using the Fourier analysis and the band-pass filter is applied to further characterize the data. Statistical functions are also used as input to the nonlinear classifier for the final response. The results prove that the proposed feature extraction method accurately captures the hidden patterns of the sound generated by the tool, unlike the conventional features. Therefore, it is shown that the proposed method can be applied to a sound based automatic diagnosis system.

A new Clustering Algorithm for GPS Trajectories with Maximum Overlap Interval (최대 중첩구간을 이용한 새로운 GPS 궤적 클러스터링)

  • Kim, Taeyong;Park, Bokuk;Park, Jinkwan;Cho, Hwan-Gue
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.9
    • /
    • pp.419-425
    • /
    • 2016
  • In navigator systems, keeping map data up-to-date is an important task. Manual update involves a substantial cost and it is difficult to achieve immediate reflection of changes with manual updates. In this paper, we present a method for trajectory-center extraction, which is essential for automatic road map generation with GPS data. Though clustered trajectories are necessary to extract the center road, real trajectories are not clustered. To address this problem, this paper proposes a new method using the maximum overlapping interval and trajectory clustering. Finally, we apply the Virtual Running method to extract the center road from the clustered trajectories. We conducted experiments on real massive taxi GPS data sets collected throughout Gang-Nam-Gu, Sung-Nam city and all parts of Seoul city. Experimental results showed that our method is stable and efficient for extracting the center trajectory of real roads.

Distortion Invariant Vehicle License Plate Extraction and Recognition Algorithm (왜곡 불변 차량 번호판 검출 및 인식 알고리즘)

  • Kim, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.1-8
    • /
    • 2011
  • Automatic vehicle license plate recognition technology is widely used in gate control and parking control of vehicles, and police enforcement of illegal vehicles. However inherent geometric information of the license plate can be transformed in the vehicle images due to the slant and the sunlight or lighting environment. In this paper, a distortion invariant vehicle license plate extraction and recognition algorithm is proposed. First, a binary image reserving clean character strokes can be achieved by using a DoG filter. A plate area can be extracted by using the location of consecutive digit numbers that reserves distortion invariant characteristic. License plate is recognized by using neural networks after geometric distortion correction and image enhancement. The simulation results of the proposed algorithm show that the accuracy is 98.4% and the average speed is 0.05 seconds in the recognition of 6,200 vehicle images that are obtained by using commercial LPR system.

Fingerprint Image Quality Analysis for Knowledge-based Image Enhancement (지식기반 영상개선을 위한 지문영상의 품질분석)

  • 윤은경;조성배
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.911-921
    • /
    • 2004
  • Accurate minutiae extraction from input fingerprint images is one of the critical modules in robust automatic fingerprint identification system. However, the performance of a minutiae extraction is heavily dependent on the quality of the input fingerprint images. If the preprocessing is performed according to the fingerprint image characteristics in the image enhancement step, the system performance will be more robust. In this paper, we propose a knowledge-based preprocessing method, which extracts S features (the mean and variance of gray values, block directional difference, orientation change level, and ridge-valley thickness ratio) from the fingerprint images and analyzes image quality with Ward's clustering algorithm, and enhances the images with respect to oily/neutral/dry characteristics. Experimental results using NIST DB 4 and Inha University DB show that clustering algorithm distinguishes the image Quality characteristics well. In addition, the performance of the proposed method is assessed using quality index and block directional difference. The results indicate that the proposed method improves both the quality index and block directional difference.

An Extraction Method of Glomerulus Region from Renal Tissue Image (신장조직 영상에서 사구체 영역의 추출법)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.2
    • /
    • pp.70-76
    • /
    • 2012
  • In this paper, an automatic extraction method of glomerulus region from human renal tissue image is presented. The important information reflecting the state of kidneys richly included in the glomeruli, so it should be the first step to extract the glomerulus region from the renal tissue image for the further quantitative analysis of the renal condition. Especially, there is no clear difference between the glomerulus and other tissues, so the glomerulus region can not be easily extracted from its background by the existing segmentation methods. The outer edge of a glomerulus region is regarded as a common property for the regions of this kind ; a two- dimensional Gaussian distribution is used to convolve with an original image first and then the image is thresholded at this blurred image ; a closed curve corresponding to the outer edge can be obtained by usual pattern processing skills like thinning, branch-cutting, hole-filling etc., Finally, the glomerulus region can be obtained by extracting the area in the original image surrounded by the closed curve. The glomerulus regions are correctly extracted by 85 percentages and experimental results show the proposed method is effective.

Background Subtraction Algorithm Based on Multiple Interval Pixel Sampling (다중 구간 샘플링에 기반한 배경제거 알고리즘)

  • Lee, Dongeun;Choi, Young Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • Background subtraction is one of the key techniques for automatic video content analysis, especially in the tasks of visual detection and tracking of moving object. In this paper, we present a new sample-based technique for background extraction that provides background image as well as background model. To handle both high-frequency and low-frequency events at the same time, multiple interval background models are adopted. The main innovation concerns the use of a confidence factor to select the best model from the multiple interval background models. To our knowledge, it is the first time that a confidence factor is used for merging several background models in the field of background extraction. Experimental results revealed that our approach based on multiple interval sampling works well in complicated situations containing various speed moving objects with environmental changes.

Semi-automatic Extraction of 3D Building Boundary Using DSM from Stereo Images Matching (영상 매칭으로 생성된 DSM을 이용한 반자동 3차원 건물 외곽선 추출 기법 개발)

  • Kim, Soohyeon;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1067-1087
    • /
    • 2018
  • In a study for LiDAR data based building boundary extraction, usually dense point cloud was used to cluster building rooftop area and extract building outline. However, when we used DSM generated from stereo image matching to extract building boundary, it is not trivial to cluster building roof top area automatically due to outliers and large holes of point cloud. Thus, we propose a technique to extract building boundary semi-automatically from the DSM created from stereo images. The technique consists of watershed segmentation for using user input as markers and recursive MBR algorithm. Since the proposed method only inputs simple marker information that represents building areas within the DSM, it can create building boundary efficiently by minimizing user input.

Automation of Bio-Industrial Process Via Tele-Task Command(I) -identification and 3D coordinate extraction of object- (원격작업 지시를 이용한 생물산업공정의 생력화 (I) -대상체 인식 및 3차원 좌표 추출-)

  • Kim, S. C.;Choi, D. Y.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • Major deficiencies of current automation scheme including various robots for bioproduction include the lack of task adaptability and real time processing, low job performance for diverse tasks, and the lack of robustness of take results, high system cost, failure of the credit from the operator, and so on. This paper proposed a scheme that could solve the current limitation of task abilities of conventional computer controlled automatic system. The proposed scheme is the man-machine hybrid automation via tele-operation which can handle various bioproduction processes. And it was classified into two categories. One category was the efficient task sharing between operator and CCM(computer controlled machine). The other was the efficient interface between operator and CCM. To realize the proposed concept, task of the object identification and extraction of 3D coordinate of an object was selected. 3D coordinate information was obtained from camera calibration using camera as a measurement device. Two stereo images were obtained by moving a camera certain distance in horizontal direction normal to focal axis and by acquiring two images at different locations. Transformation matrix for camera calibration was obtained via least square error approach using specified 6 known pairs of data points in 2D image and 3D world space. 3D world coordinate was obtained from two sets of image pixel coordinates of both camera images with calibrated transformation matrix. As an interface system between operator and CCM, a touch pad screen mounted on the monitor and remotely captured imaging system were used. Object indication was done by the operator’s finger touch to the captured image using the touch pad screen. A certain size of local image processing area was specified after the touch was made. And image processing was performed with the specified local area to extract desired features of the object. An MS Windows based interface software was developed using Visual C++6.0. The software was developed with four modules such as remote image acquisiton module, task command module, local image processing module and 3D coordinate extraction module. Proposed scheme shoed the feasibility of real time processing, robust and precise object identification, and adaptability of various job and environments though selected sample tasks.

  • PDF