DOI QR코드

DOI QR Code

Background Subtraction Algorithm Based on Multiple Interval Pixel Sampling

다중 구간 샘플링에 기반한 배경제거 알고리즘

  • 이동은 (LG CNS 정보기술연구원) ;
  • 최영규 (한국기술교육대학교 컴퓨터공학부)
  • Received : 2012.06.26
  • Accepted : 2012.09.26
  • Published : 2013.01.31

Abstract

Background subtraction is one of the key techniques for automatic video content analysis, especially in the tasks of visual detection and tracking of moving object. In this paper, we present a new sample-based technique for background extraction that provides background image as well as background model. To handle both high-frequency and low-frequency events at the same time, multiple interval background models are adopted. The main innovation concerns the use of a confidence factor to select the best model from the multiple interval background models. To our knowledge, it is the first time that a confidence factor is used for merging several background models in the field of background extraction. Experimental results revealed that our approach based on multiple interval sampling works well in complicated situations containing various speed moving objects with environmental changes.

배경제거는 동영상의 내용을 자동으로 분석하기 위한 매우 중요한 기술의 하나로 움직이는 객체를 검출하고 추적하기 위한 핵심 기술이다. 본 논문에서는 배경 모델과 함께 배경 영상을 제공하는 새로운 샘플링 기반의 배경제거 알고리즘을 제안한다. 제안된 방법에서는 움직임이 빠른 객체와 느린 객체를 동시에 처리하기 위해 다중 구간 샘플링 기법을 이용하여 배경 모델을 생성한다. 이러한 다중 구간 배경 모델들로부터 최선의 배경 모델을 만들기 위해 "신뢰도"를 사용한 것이 본 논문의 특징이다. 배경 제거 분야에서 다양한 모델을 병합하여 하나의 모델을 만들기 위해 신뢰도를 정의하여 사용한 경우는 현재까지 보고되지 않았다. 실험을 통해 제안된 방법이 다양한 속도의 객체가 존재하고 시간에 따른 그림자의 이동과 같은 환경 변화가 있는 응용에서도 안정적인 결과를 나타내는 것을 알 수 있었다.

Keywords

References

  1. T. H. Cho and Y. K. Choi, "Motion Detection Using Multiple Distributions for Background," The KIPS Transactions, Vol.8, No.4, pp.381-389, 2001.
  2. N. McFarlane and C. Schofield, "Segmentation and Tracking of Piglets in Images," Machine Vision Applicaton, Vol.8, pp.187-193, 1995. https://doi.org/10.1007/BF01215814
  3. C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, "Pfinder: Real-Time Tracking of the Human Body," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.19, No.7, pp.780-785, July, 1997. https://doi.org/10.1109/34.598236
  4. C. Stauffer and W. Grimson, "Adaptive Background Mixture Models for Real-Time Tracking," Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, Vol.2, pp.246-252, 1999.
  5. A. Elgammal, R. Duraiswami, D. Harwood, and L.S. Davis, "Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance," Proc. IEEE, Vol.90, No.7, pp.1151-1163, 2002. https://doi.org/10.1109/JPROC.2002.801448
  6. Z. Zivkovic, "Improved adaptive gausian mixture model for background subtraction," in Proceedings of the International Conference on Pattern Recognition, pp.28-31, 2004.
  7. A. Mittal and D. Huttenlocher, "Scene modeling for wide area surveillance and image synthesis," In CVPR, 2000.
  8. O. Javed, K. Shafique, and M. Shah, "A hierarchical approach to robust background subtraction using color and gradient information," In in IEEE Workshop on Motion and Video Computing, pp.22-27, 2002.
  9. M. Heikkila and M. Pietikainen, "A Texture-Based Method for Modeling the Background and Detecting Moving Objects," IEEE Trans. on PAMI, Vol.28, No.4, pp.657-662, April, 2006. https://doi.org/10.1109/TPAMI.2006.68
  10. H. Wang and D. Suter, "A consensus-based method for tracking: Modelling background scenario and foreground appearance," Pattern Recognition, Vol.40, No.3, pp.1091-1105, 2007. https://doi.org/10.1016/j.patcog.2006.05.024
  11. O. Barnich and M. Van Droogenbroeck, "ViBe: A universal background subtraction algorithm for video sequences," In IEEE Transactions on Image Processing, 20(6):1709-1724, June, 2011. https://doi.org/10.1109/TIP.2010.2101613
  12. Y. Pritch, A. Rav-Acha and S. Peleg, "Non-Chronological Video Synopsis and Indexing," IEEE Trans. on PAMI, Vol.30, pp.1971-1984, 2008. https://doi.org/10.1109/TPAMI.2008.29