• Title/Summary/Keyword: 배경 제거

Search Result 690, Processing Time 0.026 seconds

Extraction of open-caption from video (비디오 자막 추출 기법에 관한 연구)

  • 김성섭;문영식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.481-483
    • /
    • 2001
  • 본 논문에서는 동영상으로부터 색상, 서체, 크기와 같은 사전 지식 없이도 글자/자막을 효율적으로 추출하는 방법을 제안한다. 해상도가 낮고 복잡한 배경을 포함할 수 있는 비디오에서 글자 인식률 향상을 위해 먼저 동일한 텍스트 영역의 존재하는 프레임들을 자동적으로 추출한 후 이들의 시간적 평균영상을 만들어 향상된 영상을 얻는다. 평균영상의 외각선 영상의 투영 값을 통해 문자영역을 찾고 각 텍스트 영역에 대해 1차 배경제거 과정인 region filling을 적용하여 글자의 배경들을 제거 함으로써 글자를 추출한다. 1차 배경제거의 결과를 검증하고 추가적으로 k-means를 이용한 color clustering을 적용하여 남아있는 배경들을 효율적으로 제거 함으로써 최종 글자영상을 추출한다.

  • PDF

Background subtract ion with comb mat ion of intensity and depth informal ion (밝기 정보와 깊이 정보를 결합한 배경 제거)

  • 서경민;이칠우
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.138-141
    • /
    • 2001
  • 영상을 전경과 배경으로 분리하는 작업은 영상을 의미 있고 관심의 대상인 전경 영역과 그렇지 않은 배경 영역으로 나눈다는 점에서 매우 유용한 작업이다. 기존의 제안된 방법으로는 intensity 기반, 깊이 기반 그리고 motion 기반 배경 제거 방법 등이 있다. 본 논문에서는 영상내의 intensity 정보와 깊이 정보를 함께 이용하여 영상 내의 배경을 제거하는 방법을 제안한다. 제안하는 방법은 영상 인식과 강시 시스템 등의 전처리로서 활용될 수 있다.

  • PDF

Background Subtraction Algorithm by Using the Local Binary Pattern Based on Hexagonal Spatial Sampling (육각화소 기반의 지역적 이진패턴을 이용한 배경제거 알고리즘)

  • Choi, Young-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.533-542
    • /
    • 2008
  • Background subtraction from video data is one of the most important task in various realtime machine vision applications. In this paper, a new scheme for background subtraction based on the hexagonal pixel sampling is proposed. Generally it has been found that hexagonal spatial sampling yields smaller quantization errors and remarkably improves the understanding of connectivity. We try to apply the hexagonally sampled image to the LBP based non-parametric background subtraction algorithm. Our scheme makes it possible to omit the bilinear pixel interpolation step during the local binary pattern generation process, and, consequently, can reduce the computation time. Experimental results revealed that our approach based on hexagonal spatial sampling is very efficient and can be utilized in various background subtraction applications.

A Crack Detection of Lens using Adaptive Binarization (적응적 이진화를 이용한 렌즈의 흠집 검출)

  • Ahn, Ha-jun;Park, Jae-woo;Kim, Kwang Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.517-519
    • /
    • 2016
  • 본 논문에서는 적응적 이진화 기법을 적용하여 흠집 영역을 검출한다. 제안된 방법은 안경 렌즈 영상에서 명암 대비를 적용하여 렌즈의 명암을 강조한다. 명암이 강조된 영상에서 렌즈 밖의 배경 영역은 흠집 검출에 불필요하므로 개선된 평균 이진화 기법을 적용한 후에 렌즈의 윤곽선을 검출하여 렌즈 이외의 배경을 제거한다. 렌즈 이외의 배경이 제거된 렌즈 영상에서 렌즈 내부에 명암대비를 적용하여 렌즈 내부의 배경과 흠집의 명암을 강조한다. 명암이 강조된 렌즈 내부 영역에서 적응적 이진화 기법을 적용하여 흠집과 잡음을 검출한다. 잡음은 중간값 필터를 적용하여 제거한 후에 흠집 영역을 추출한다. 추출된 흠집 영역을 렌즈의 중심으로부터의 거리와 흠집의 크기를 퍼지 추론 규칙을 적용하여 눈에 미치는 영향 정도를 분석한다. 본 논문에서 제안된 방법의 성능을 분석하기 위해 CHEMI, MID, HL, HM과 같은 시력 보정용 렌즈 영상 6장을 대상으로 실험한 결과, 제안된 방법이 기존 렌즈 흠집 추출 방법보다 흠집 영역이 정확하게 추출되었고 눈에 미치는 영향을 효과적으로 분석할 수 있는 가능성을 확인하였다.

  • PDF

Background modeling and Application for Real-time Surveillance (실시간 감시 시스템을 위한 배경 모델링과 응용)

  • 최정훈;조정현;김승호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.781-783
    • /
    • 2004
  • 본 논문에서는 실외 환경의 실시간 감시 시스템에 응용할 배경 모델링을 설계 구현한다. 일반적인 감시 시스템은 배경 모델링, 오브젝트 검출, 그리고 오브젝트 추적으로 나뉜다. 실시간으로 배경 모델링과 갱신을 수행하고 객체를 추적하기 위해서는 연산 시간이 적어야하며 노이즈 제거를 수행해야 한다. 노이즈 제거를 위하여 메디안 검출 방법을 이용하고 있으나 정렬 시간이 많은 문제점이 있다. 본 논문에서는 윈도우 기반의 러닝 윈도우 리스트 (running window list)를 제안하여 메디안 정렬 시간을 최소화하고 실시간으로 배경 모델링과 배경 갱신을 수행하는 방법을 제안한다.

  • PDF

Background Subtraction Algorithm Based on Multiple Interval Pixel Sampling (다중 구간 샘플링에 기반한 배경제거 알고리즘)

  • Lee, Dongeun;Choi, Young Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • Background subtraction is one of the key techniques for automatic video content analysis, especially in the tasks of visual detection and tracking of moving object. In this paper, we present a new sample-based technique for background extraction that provides background image as well as background model. To handle both high-frequency and low-frequency events at the same time, multiple interval background models are adopted. The main innovation concerns the use of a confidence factor to select the best model from the multiple interval background models. To our knowledge, it is the first time that a confidence factor is used for merging several background models in the field of background extraction. Experimental results revealed that our approach based on multiple interval sampling works well in complicated situations containing various speed moving objects with environmental changes.

A Fast Background Subtraction Method Robust to High Traffic and Rapid Illumination Changes (많은 통행량과 조명 변화에 강인한 빠른 배경 모델링 방법)

  • Lee, Gwang-Gook;Kim, Jae-Jun;Kim, Whoi-Yul
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.417-429
    • /
    • 2010
  • Though background subtraction has been widely studied for last decades, it is still a poorly solved problem especially when it meets real environments. In this paper, we first address some common problems for background subtraction that occur in real environments and then those problems are resolved by improving an existing GMM-based background modeling method. First, to achieve low computations, fixed point operations are used. Because background model usually does not require high precision of variables, we can reduce the computation time while maintaining its accuracy by adopting fixed point operations rather than floating point operations. Secondly, to avoid erroneous backgrounds that are induced by high pedestrian traffic, static levels of pixels are examined using shot-time statistics of pixel history. By using a lower learning rate for non-static pixels, we can preserve valid backgrounds even for busy scenes where foregrounds dominate. Finally, to adapt rapid illumination changes, we estimated the intensity change between two consecutive frames as a linear transform and compensated learned background models according to the estimated transform. By applying the fixed point operation to existing GMM-based method, it was able to reduce the computation time to about 30% of the original processing time. Also, experiments on a real video with high pedestrian traffic showed that our proposed method improves the previous background modeling methods by 20% in detection rate and 5~10% in false alarm rate.

SFMOG : Super Fast MOG Based Background Subtraction Algorithm (SFMOG : 초고속 MOG 기반 배경 제거 알고리즘)

  • Song, Seok-bin;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1415-1422
    • /
    • 2019
  • Background subtraction is the major task of computer vision and image processing to detect changes in video. The best performing background subtraction is computationally expensive that cannot be used in real time in a typical computing environment. The proposed algorithm improves the background subtraction algorithm of the widely used MOG with the image resizing algorithm. The proposed image resizing algorithm is designed to drastically reduce the amount of computation and to utilize local information, which is robust against noise such as camera movement. Experimental results of the proposed algorithm have a classification capability that is close to the state of the art background subtraction method and the processing speed is more than 10 times faster.

금속 파편 탐지를 위한 적응 잡음 제거

  • 부인형;윤원영;신원기
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.582-586
    • /
    • 1996
  • 본 연구에서는 원자력 발전소내 금속 파편 탐지 시스템의 성능 향상을 위한 적응 잡음제거에 관하여 서술한다. 현재 사용중인 원전내 금속 파편 탐지 시스템은 배경잡음의 영향으로 그 이용 효율이 매우 낮은 현실이다. 이런 문제점을 해결하는 한 방법으로써 적응 잡음 제거 방식을 이용하여 배경잡음의 영향을 최소화하였다. 컴퓨터 모의 실험을 통하여 그 성능을 입증하였으며, 특히 배경잡음속에 충격신호가 묻혀있는 경우에도 뛰어난 탐지 효과를 보였다.

  • PDF

MSER-based Character detection using contrast differences in natural images (자연 이미지에서 명암차이를 이용한 MSER 기반의 문자 검출 기법)

  • Kim, Jun Hyeok;Lee, Sang Hun;Lee, Gang Seong;Kim, Ki Bong
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.27-34
    • /
    • 2019
  • In this paper, we propose a method to remove the background area by analyzing the pattern of the character area. In the character detection result of the MSER(Maximally Stable External Regions) method which distinguishes a region having a constant contrast background regions were detected. To solve this problem, we use the MSER method in natural images, the background is removed by calculating the change rate by searching the character area and the background area which are not different from the areas where the contrast values are different from each other. However, in the background removed image, using the LBP(Local Binary Patterns) method, the area with uniform values in the image was determined to be a character area and character detection was performed. Experiments were carried out with simple images with backgrounds, images with frontal characters, and images with slanted images. The proposed method has a high detection rate of 1.73% compared with the conventional MSER and MSER + LBP method.