Kim, Ki-Won;Kwon, Yong-Rak;Seo, Seong-Won;Kwon, Kyung-Tae;Oh, Joo-Young;Son, Soon-Yong;Son, Jin-Hyun;Min, Jung-Whan
Journal of radiological science and technology
/
v.38
no.3
/
pp.205-211
/
2015
We evaluated the effectiveness of TL (Time Limit) method by comparing with NTL (Non-time limit) method when it is used for examinations for abdomen Anterior Posterior (AP) in this paper. The evaluation was conducted based on the comparison of dose, and of signal to noise ratio (SNR) and contrast to ratio (CNR) on both methods. The experiments were conducted with XGEO GC 80 (Samsung, Korea), Unfors ThinX RAD (Unfors, Sweden) and Rando Phantom (Alderson research laboratories, USA) and shielding material with the size of $5.5{\times}9{\times}0.1cm^3$. It was set to activate only two upper ionization chambers in automatic exposure control(AEC) mode and the tube-voltage was set to 80kVp. When the exposure time was limited, it is limited to 51 msec. The images both by NTL AEC method and TL AEC method were acquired when with and without attachment of shielding material on the upper ionization chambers. The images were evaluated by SNR and CNR which are the image evaluation methods using 'Image J'. The NTL AEC method showed increases in dose as much as 130.7% at maximum and 80% at minimum than other methods. The TL AEC method showed decreases in mAs and exposure dose than the NTL AEC method as much as 43.8% and 44.4% respectively. There were no significant differences in SNR or CNR for the experiments (($p{\geq}0.05$). Therefore, it is suggested that the TLAEC mode is more effective when examining patients who have high BMI index or a patient with a metallic substance in the body after surgery.
This research was accomplished to assess dose effects on image quality at computed radiography (CR). The ultimate target of the research was finding optimized exposure that provides necessary image quality for the clinical chest diagnosis. Modulation transfer function (MTF), normalized noise power spectrum (NNPS), and Noise equivalent quanta (NEQ) corresponding to the different doses were measured for the assessment of image quality. The preparation of "edge test device" used in MTF measurement and experimental geometry setup were followed by the recommendations of International Electrotechnical Commission (IEC). The experimental results show the necessary image quality can be achieved even at a half of the automatic exposure control (AEC) setting dose for chest diagnosis. It means that the patient exposure can be reduced dramatically by using optimized dose.
This study confirmed the usefulness of the copper filter according to the mode change by comparing and analyzing the energy change according to the application of the copper filter and the change in effective dose and image quality according to the distance to the subject in the DR(Digital Radiography) system. The average energy increased when the copper filter was applied and the reduction rate by 50% of mAs was increased as the thickness of the copper filter increased according to the application of the 10 kVp rule in AEC mode. The effective dose decreased as the thickness increased when the copper filter was applied in AEC(Automatic Exposure Control) mode and manual mode according to the application of the 10 kVp rule, and the decrease rate decreased with increasing 10 kVp increments. As a result of analyzing the dicom images for AEC mode and manual mode with Image J. the PSNR(Peak Signal to Noise Ratio) values were approximate values of less than 30 dB for each mode and for each copper filter thickness. When the copper filter was applied, the average energy increased, so when the 10 kVp rule was applied, the mAs for each mode could be reduced, and the effective dose could also be reduced. However, as the distance and tube voltage increased, the reduction rate of mAs decreased, and the quality of the image was found to decrease when the copper filter was applied, but there was no difference in quality of the image when the copper filter thickness increased.
This study proposes a method to evaluate the performance of a detector by analyzing the dynamic step wedge and histogram according to the change of the tube voltage and sensitivity when using the Automatic Exposure Control (AEC). The performance of a detector was evaluated by measuring X-ray quality, Entrance Surface Dose (ESD), tube current, dynamic range corresponding to detector sensitivities of S200, S400, S800, S1000 per tube voltage of 60, 70, 81, 90 kVp. As a results, all of the qualities satisfied the acceptance criteria, and the Entrance Surface Dose and tube current were decreased stage by stage as sensitivity was set higher. In the dynamic step wedge, the observable dynamic range has also increased as tube voltage became higher. The histogram showed the quantization separation phenomena as the tube voltage was set higher. The higher the sensitivity, the more the underflow and overflow occurred in which the amount of information on both ends of the histogram was lost. In conclusion, the deterioration in the performance of the detector was found to be insufficient to realize the change of the tube voltage and sensitivity when using the Automatic Exposure Control, and it is useful to use dynamic step wedge and histogram in evaluating detector performance evaluation.
Purpose Various methods for reducing radiation exposure have been continuously being developed. The aim of this study is to evaluate effectiveness of dose reduction, image quality and PET SUV changes by applying combination of automatic exposure dose(AEC), automated dose-optimized selection of X-ray tube voltage(CAREkV) and sinogram affirmed iterative reconstruction(SAFIRE) which can be controled by user. Materials and Methods Torso, AAPM CT performance and IEC body phantom images were acquired using biograph mCT64, (Siemens, Germany) PET/CT scanner. Standard CT condition was 120 kV, 40 mAs. Radiation exposure and noise were evaluated by applying AEC, CAREkV(120 kV, 40 mAs) and SAFIRE(120 kV, 25 mAs) with torso phantom compare to standard CT condition. And torso, AAPM and IEC phantom images were acquired with combination of 3 methods in condition of 120 kV, 25 mAs to evaluate radiation exposure, noise, spatial resolution and SUV changes. Results When applying AEC, CTDIvol and DLP were decreased by 50.52% and 50.62% compare to images which is not applying AEC. mAs was increased by 61.5% to compensate image quality according to decreasing 20 kV when applying CAREkV. However, CTDIvol and DLP were decreased by 6.2% and 5.5%. When reference mAs was the lower and strength was the higher, reduction of radiation exposure rate was the bigger. Mean SD and DLP were decreased by 2.2% and 38% when applying SAFIRE even though mAs was decreased by 37.5%(from 40 mAs to 25 mAs). Combination of 3 methods test, SD decreased by 5.17% and there was no significant differences in spatial resolution. And mean SD and DLP were decreased by 6.7% and 36.9% compare to 120 kV, 40 mAs with AEC. For SUV test, there was no statistical differences(P>0.05). Conclusion Combination of 3 methods shows dose reduction effect without degrading image quality and SUV changes. To reduce radiation exposure in PET/CT study, continuous effort is needed by optimizing various dose reduction methods.
This study aims to raise awareness of the exposure index according to the Sub-ROI in clinical use by studying the effect of Sub-ROI's change on exposure index and dose during Chest PA examination. In this study, to examine the changes in EI and ESD according to the Sub-ROI setting, the irradiation conditions were set to 120 kVp, 200 mA, 2 mAs, and the SID was fixed to 180cm. Five types of Sub-ROI were used. The average value of EI according to the Sub-ROI's change was 135.58 ± 0.89 in AEC, 100.80 ± 0.80 in VR, 143.43 ± 0.76 in HR, 103.22 ± 0.68 in LS, and 102.79 ± 0.84 in SS. The mean value of ESD was 30.28±0.50 µGy in AEC, 30.16 ± 0.44 µGy in VR, 30.30 ± 0.46 µGy in HR, 30.23 ± 0.46 µGy in LS, and 30.28 ± 0.51 µGy in SS. As a result of this study, based on the AEC mode recommended by the manufacturer, the VR (25.7%), LS (23.9%), and SS (24.2%) modes decreased, and the HR mode increased by 5.7%. However, ESD was not affected by the Sub-ROI's change. Therefore, Sub-ROI may change EI during the Chest PA examination, it is considered that Sub-ROI should be used appropriately when setting protocols in clinical use.
Kim, Kyo-Tae;Han, Moo-Jae;Heo, Ye-Ji;Kim, Joo-Hee;Kang, Sang-Sik;Park, Ji-Koon;Nam, Sang-Hee
Journal of the Korean Society of Radiology
/
v.10
no.5
/
pp.321-325
/
2016
Dose creep is one of clinical errors that arises from the tester's inexperience or carelessness, and according to Task Group #116 of American Association of Physicists in Medicine, its continued occurrence is being reported in the digital method. At this point, the demand for an automatic exposure control device that minimizes the dose creep phenomenon and can improve reproducibility is increasing. In this study is to consider the automatic exposure control device sensor that can is not only easy to produce, but also reduce the dose creep phenomenon by conducting a research on high-efficient semiconductor sensor. As a result, the Intrinsic-type and PIN-type sensors have excellent optical property compared to Ref sensor, would have less shading effect, and have relatively low sensitivity, but would provide accurate feedback signals to automatic exposure control device with its consistent tendency according to exposure condition changes.
This study focused on effects of patient exposure dose reduction with AEC (Auto Exposure Control) marker that is designed for showing location of AEC in X-ray Chest radiography. It included 880 adults who have to use Chest X-ray Digital Radiography system (DRS, LISTEM, Korea). AEC (Ion chambers are posited in top of both sides) are used to every adult and set X-ray system as Field size $17{\times}17inch$, 120kVp, FFD 180cm. 440 people of control group are posited on detector to include both sides of lung field and the other 440 people of experimental group are set to contact their lung directly to Ion chamber (making marker to shows location). Then, measured every DAP and, estimated patient effective dose by using PCXMC 2.0. The average age of control group (M:F=245:195) is 53.9 and the average BMI is 23.4. BMI ranges from under weight: 35, normal range: 279, over weight: 106 to obese: 20 and average DAP is 223.56mGycm2, Mean effective dose is 0.045mSv. The average age of experimental group (M:F=197:243) is 53.7 and the average BMI is 22.7. BMI ranges from under weight: 34, normal range: 315, over weight: 85 to obese: 6 and average DAP is 207.36mGycm2, Mean effective dose is 0.041mSv. Experimental group shows less Mean effective dose as 0.004mSv (9.7%) than control group. Also, patient numbers who got over exposure more than 0.056mSv (limit point to know efficiency of AEC marker) is 65 in control group (14.7%), 19 in experimental group (4.3%) and take statistics with t-Test. The statistical difference between two groups is 0.006. In order to use proper amount of X-ray in auto exposure controlled chest X-ray system, matching location between ion chamber and body part is needed, and using AEC marker (designed for showing location of ion chamber) is a way to reduce unnecessary patient exposure dose.
In this study, we applied AEC(Auto Exposure Control), which is used in many chest examinations, to evaluate whether medical devices inserted into the body affect the dose and image quality of chest images. After attaching three HIMD(Human implantable medical devices) to the ion chamber, the Monte Carlo methodology-based program PCXMC(PC Program for X-ray Monte Carlo) 2.0 was applied to measure the effective dose by inputting the DAP(Dose Ares Product) value derived from the Pacemaker and CRT and Chemoport Additionally, to evaluate image quality, we set three regions of interest and one noise region on the chest and measured SNR and CNR. The final study results showed significant differences in DAP and Effective dose. There was a significant difference between Pacemaker and CRT when AEC was applied and not applied. (p<0.05) When applied, the dose increased by 37% for Pacemaekr and 52% for CRT. Chemoport showed a 10% increase in effective dose depending on whether AEC was applied, but there was no significant difference. (p>0.05) In the image quality evaluation, there was no significant difference in image quality between all HIMD insertions and AEC applied or not. (p>0.05) Therefore, when the HIMD was inserted into the chest during a chest x ray and overlapped with the ion chamber sensor, the effective dose increased, and there was no difference in image quality even at a low dose without AEC. Therefore, when performing a chest X-ray examination of a patient with a HIMD inserted, it is considered that performing the examination without applying AEC is a method that can be considered to reduce the patient's radiation exposure.
This study aimed to propose a methodology for quantitatively analyzing problems resulting from the performance and combination of the ionization chamber when using an automatic exposure control (AEC) and to optimize the performance of the digital radiography (DR). In the experimental method, the X-ray quality of the parameters used for the examination of the abdomen and pelvis was evaluated by percentage average error (PAE) and half value layer (HVL). Then, the stability of the radiation output and the image quality were analyzed by calculating the entrance surface dose (ESD) and entropy when the three ionization chambers were combined. As a result, all of the X-ray quality of the digital radiography used in the experiment showed a percentage average error and a half value layer in the normal range. The entrance surface dose increased in proportion to the combination of chambers, and entropy increased in proportion to the combination of ionization chambers except when three chambers were combined. In conclusion, analysis using entrance surface dose and entropy was found to be a useful method for evaluating the performance and combination problems of the ionization chamber, and the optimal performance of the digital radiography can be maintained when two or less ionization chambers are combined.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.