• Title/Summary/Keyword: Austenite Stainless Steel

Search Result 192, Processing Time 0.024 seconds

A Comparative Study on Mechanical Behavior of Low Temperature Application Materials for Ships and Offshore Structures (선박 및 해양구조물용 극저온 재료의 기계적 거동 특성)

  • Park, Woong-Sup;Kang, Ki-Yeob;Chun, Min-Sung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.189-199
    • /
    • 2011
  • Austenite stainless steel(ASS), aluminum alloy and nickel steel alloy are the most widely used in many cryogenic applications due to superior mechanical properties at low temperature. The Face-Centered Cubic(FCC) and Hexagonal Close-Packed(HCP) materials are used for the primary and secondary insulation barrier of Liquefied Natural Gas(LNG) carrier tank and various kinds of LNG applications currently. In this study, tensile tests of ASS, aluminum alloy and nickel steel alloy were carried out for the acquisition of quantitative mechanical properties under the cryogenic environment. The range of thermal condition was room temperature to $-163^{\circ}C$ and strain rate range was 0.00016/s to 0.01/s considering the dependencies of temperatures and strain rates. The comprehensive test data were analyzed in terms of the characteristics of mechanical behavior for the development of constitutive equation and its application.

Sintering Characteristics of 304 and 316L Stainless Steel Fine Powder (304 및 316L 스테인레스강 미립 분말의 소결 특성)

  • Lim, Tae-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1555-1559
    • /
    • 2008
  • The characteristics of 304 (Fe-18%Cr-12%Ni) and 316L (Fe-18%Cr-13%Ni-2.4%Mo) austenite stainless-steel compacts sintered with $5{\sim}15{\mu}m$ powder were investigated and the results led to the following conclusions: (1) When the sintering time was 3.6ks, the relative density of sintered compacts was $95{\sim}98%$, regardless of any other sintering condition. (2) When a vacuum sintering was done with $5{\mu}m$ stainless steel powders, almost fully-dense sintered compacts were obtained at is = 57.6ks. (3) The amount of residual oxygen in 304 and 316L sintered compacts was $0.5{\sim}0.6%$, regardless of sintering atmosphere. (4) The amount of residual oxygen in the vacuum sintered compact decreased more than 0.3 % due to addition of carbon powder, thereby reducing the formation of oxides. Furthermore, the addition of carbon improved the density of sintered compact, which enables us to make a fully-dense high performance sintered compact.

Influence of ultrasonic impact treatment on microstructure and mechanical properties of nickel-based alloy overlayer on austenitic stainless steel pipe butt girth joint

  • Xilong Zhao;Kangming Ren;Xinhong Lu;Feng He;Yuekai Jiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4072-4083
    • /
    • 2022
  • Ultrasonic impact treatment (UIT) is carried out on the Ni-based alloy stainless steel pipe gas tungsten arc welding (GTAW) girth weld, the differences of microstructure, microhardness and shear strength distribution of the joint before and after ultrasonic shock are studied by microhardness test and shear punch test. The results show that after UIT, the plastic deformation layer is formed on the outside surface of the Ni-based alloy overlayer, single-phase austenite and γ type precipitates are formed in the overlayer, and a large number of columnar crystals are formed on the bottom side of the overlayer. The average microhardness of the overlayer increased from 221 H V to 254 H V by 14.9%, the shear strength increased from 696 MPa to 882 MPa with an increase of 26.7% and the transverse average residual stress decreased from 102.71 MPa (tensile stress) to -18.33 MPa (compressive stress), the longitudinal average residual stress decreased from 114.87 MPa (tensile stress) to -84.64 MPa (compressive stress). The fracture surface has been appeared obvious shear lip marks and a few dimples. The element migrates at the fusion boundary between the Ni-based alloy overlayer and the austenitic stainless steel joint, which is leaded to form a local martensite zone and appear hot cracks. The welded joint is cooled by FA solidification mode, which is forming a large number of late and skeleton ferrite phase with an average microhardness of 190 H V and no obvious change in shear strength. The base metal is all austenitic phase with an average microhardness of 206 H V and shear strength of 696 MPa.

Super Duplex Stainless Steel Matrix Composites with High Strength and Favorable Ductility Achieved Through Laser Powder Bed Fusion and Powder Mixture

  • Yongjian Fang;Yali Zhang;Jonghwan Suhr
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.94-100
    • /
    • 2024
  • In order to evade the premature failure of super duplex stainless steels (SDSSs) in some harsh environments, the increase of their mechanical properties is a promising approach. In this study, based on the laser powder bed fusion (LPBF) technique, SDSS matrix composites without post heat treatment were fabricated by using the powder mixture of SDSSs, super austenitic stainless steels (SASSs) and micron-sized TiC particles. Many in-situ TiCxNy nanoparticles were found to be formed by using micron-sized TiC particles in as-built composites, and both fine ferrite and austenite grains were generated. The as-built composites exhibited an excellent combination of high ultimate tensile strength (UTS) (~1066 MPa) and good uniform elongation (UE) (~15.6%), showing a better mechanical property compared with other reported LPBF-fabricated SDSSs, which was mainly attributed to the fine grain, Orowan and dislocation strengthening mechanisms. In particular, the successful fabrication of SDSS matrix composites can set the stage for producing high-performance metallic parts via LPBF technique.

Effect of Laser Beam Diameter on the Microstructure and Hardness of 17-4 PH Stainless Steel Additively Manufactured by Direct Energy Deposition (레이저 빔 직경 변화에 따른 17-4 PH 스테인리스 강 DED 적층 조형체의 미세조직 및 경도 변화)

  • Kim, Woo Hyeok;Go, UiJun;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.314-319
    • /
    • 2022
  • The effect of the laser beam diameter on the microstructure and hardness of 17-4 PH stainless steel manufactured via the directed energy deposition process is investigated. The pore size and area fraction are much lower using a laser beam diameter of 1.0 mm compared with those observed using a laser beam diameter of 1.8 mm. Additionally, using a relatively larger beam diameter results in pores in the form of incomplete melting. Martensite and retained austenite are observed under both conditions. A smaller width of the weld track and overlapping area are observed in the sample fabricated with a 1.0 mm beam diameter. This difference appears to be mainly caused by the energy density based on the variation in the beam diameter. The sample prepared with a beam diameter of 1.0 mm had a higher hardness near the substrate than that prepared with a 1.8 mm beam diameter, which may be influenced by the degree of melt mixing between the 17-4 PH metal powder and carbon steel substrate.

Phase Changes during High Temperature Gas Nitriding of Nb Alloyed STS 444 Ferritic Stainless steel (Nb이 첨가된 STS 444 페라이트계 스테인리스강의 고온질화 열처리시 조직변화)

  • Kong, J.H.;Yoo, D.K.;Lee, H.W.;Kim, Y.H.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.6
    • /
    • pp.323-328
    • /
    • 2007
  • This study has been investigated the effect of high temperature gas nitriding (HTGN) heat treatment of STS 444 (18Cr-0.01Ni-0.01C-0.2Nb) ferritic stainless steel in an atmosphere of nitrogen gas at the temperature range between $1050^{\circ}C\;and\;1150^{\circ}C$. The surface layer was changed into martensite and austenite with the nitrides of NbCrN by HTGN treatment. Due to the precipitation of nitrides and matrensite formation, the hardness of the surface layer showed $400Hv{\sim}530Hv$. The nitrogen concentration of the surface layer appeared as 0.05%, 0.12% and 0.92%, respectively, at $1050^{\circ}C,\;1100^{\circ}C\;and\;1150^{\circ}C$. When the nitrogen is permeated from surface to interior, Nb and Cr, which have strong affinities with nitrogen, also move from interior to surface. Therefore it is considered that this counter-current of atoms promotes the formation of NbCrN at the surface layer.

A Study on the Welds Characteristics of Stainless Steel 316L Pipe using Orbital Welding Process (오비탈 용접법을 적용한 STS 316L 파이프 소재의 용접부 특성에 관한 연구)

  • Lee, B.W.;Joe, S.M.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.71-77
    • /
    • 2010
  • This paper was studied on microstructure, mechanical properties and corrosion characteristics of 316L stainless steel pipe welds was fabricated by orbital welding process. S-Ar specimen was fabricated by using Ar purge gas and S-$N_2$ specimen was fabricated by using $N_2$ purge gas. Ferrite was not detected in weld metal of S-$N_2$ specimen but the order of 0.13 Ferrite number(FN) was detected in weld metal of S-Ar specimen. Oxygen and Nitrogen concentration of S-$N_2$ specimen was higher than S-Ar specimen on HAZ and inner bead. The welds microstructural characteristics of S-Ar and S-$N_2$ specimens are similar. The microvickers hardness values of S-Ar and S-$N_2$ specimens welds were similar and average values of each regions were in the range of 174~194. The microstructures of S-Ar and S-$N_2$ weld metal were full austenite by primary austenite solidification. The Solidification structures of S-Ar and S-$N_2$ weld metal were formed directional dendrite toward bead center. The potentiodynamic polarization curve of STS 316L pipe welds exhibited typical active, passive, transpassive behaviour. Corrosion current density$(I_{corr.})$ and corrosion rate values of S-Ar specimen in 0.1M HCl solution were $0.95{\mu}A/cm^2$ and $0.31{\mu}A$/year respectively. The values of S-$N_2$ specimen were $1.4{\mu}A/cm^2$ and $0.45{\mu}m$/year.

A Study on the Mechanical Properties of Duplex Stainless Steel Weldment According to Mo Contents

  • Bae, Seong Han;Lim, Hee Dae;Jung, Won Jung;Gil, Woong;Jeon, Eon Chan;Lee, Sung Geun;Lee, Hyo Jong;Kim, In Soo;Lee, Hae Woo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.645-651
    • /
    • 2012
  • This study investigated changes in phase fraction caused by the addition of Mo, as well as the subsequent behaviour of N and its effect on the mechanical properties of welded 24Cr-N duplex stainless steel weld metals. Filler metal was produced by fixing the contents of Cr, Ni, N, and Mn while adjusting the Mo content to 1.4, 2.5, 3.5 wt%. The delta ferrite fraction increased as the Mo content increased. In contrast, the ${\gamma}$ fraction decreased and changed from a round to an acicular shape. Secondary austenite (${\gamma}^{\prime}$) was observed in all specimens in a refined form, but it decreased as the Mo content increased to the extent that it was nearly impossible to find any secondary austenite at 3.5 wt% Mo. Both tensile and yield strengths increased with the addition of Mo. In contrast, the highest value of ductility was observed at 1.41 wt% Mo. At all temperatures, impact energy absorption showed the lowest value at 3.5 wt% Mo, at which the amount of ${\delta}$-ferrite was greatest. There was no significant temperature dependence of the impact energy absorption values for any of the specimens. As the fraction of ${\gamma}$ phase decreased, the amount of N stacked in the ${\gamma}$ phase increased. Consequently, the stacking fault energy decreased, while the hardness of ${\gamma}$ increased.

Effects of alloy elements on electrochemical characteristics improvement of stainless steel in sea water (해수환경하에서 스테인리스강의 전기화학적 특성 개선을 위한 합금원소의 영향)

  • Lee, Jung-Hyung;Choi, Yong-Won;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.890-899
    • /
    • 2014
  • Austenitic stainless steel is widely used in various industries due to its excellent corrosion resistance. However, Cr carbides precipitation along the grain boundaries after heat treatment or welding may develop Cr depleted zone, which acts as a preferential site for intergranular corrosion attack. To resolve this, carbon stabilizing element such as Ti or Nb are added to suppress formation of Cr carbides. However, there are few reports on corrosion characteristics under seawater environment of the stabilized stainless steel. This study investigated the effects of alloying contents on the electrochemical characteristics in seawater of stainless steel containing stabilizing element(Ti and Nb). To achieve this, the changes on the microstructure due to alloying were observed with microscope, and the electrochemical characteristics were determined by measurement of natural potential and potentiodynamic polarization experiments. The microscopic observation revealed that all specimens had inclusions other than the austenite matrix phase due to the addition of alloying elements. Such inclusions are considered to have different electrochemical characteristics from those of the matrix, and thus a clear distinction was found according to the type of stabilizers and the contents. The results of this study suggest that it is important to consider the effects of alloying contents on the electrochemical characteristics in seawater with the addition of Ti or Nb into austenitic stainless steel.

Properties of As-casted High Nitrogen Steel for Core of Over-head Transmission Line (가공 송전선 강심용 고질소강 주조재의 제특성)

  • Yoo, Kyung-Jae;Kim, Bong-Seo;Kwon, Hae-Woong;Kim, Byung-Geol;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.861-863
    • /
    • 1998
  • As-casted high nitrogen alloys (Fe-25%Mn-12%Cr-1%Ni) have been investigated to study core material. Nitrogen concentration in molten alloys was increased with increasing the square root of nitrogen gas pressure in melting chamber. This result can be explained by Sievert's law. Nitrogen that dissolved as a interstital solid solution element in austenite stainless steel increased lattice parameter and hardness. Electric resistivity($\rho$) was increased with increasing nitrogen concentration and was about $80{\mu}{\Omega}cm$ at room temperature. Coefficient of linear thermal expansion of the nitrogen steel was about $22{\times}10^{-6}/^{\circ}C$.

  • PDF