DOI QR코드

DOI QR Code

Influence of ultrasonic impact treatment on microstructure and mechanical properties of nickel-based alloy overlayer on austenitic stainless steel pipe butt girth joint

  • Xilong Zhao (School of Materials Science and Engineering, Lanzhou Jiaotong University) ;
  • Kangming Ren (School of Materials Science and Engineering, Lanzhou Jiaotong University) ;
  • Xinhong Lu (School of Materials Science and Engineering, Lanzhou Jiaotong University) ;
  • Feng He (School of Materials Science and Engineering, Lanzhou Jiaotong University) ;
  • Yuekai Jiang (School of Materials Science and Engineering, Lanzhou Jiaotong University)
  • Received : 2022.05.09
  • Accepted : 2022.07.04
  • Published : 2022.11.25

Abstract

Ultrasonic impact treatment (UIT) is carried out on the Ni-based alloy stainless steel pipe gas tungsten arc welding (GTAW) girth weld, the differences of microstructure, microhardness and shear strength distribution of the joint before and after ultrasonic shock are studied by microhardness test and shear punch test. The results show that after UIT, the plastic deformation layer is formed on the outside surface of the Ni-based alloy overlayer, single-phase austenite and γ type precipitates are formed in the overlayer, and a large number of columnar crystals are formed on the bottom side of the overlayer. The average microhardness of the overlayer increased from 221 H V to 254 H V by 14.9%, the shear strength increased from 696 MPa to 882 MPa with an increase of 26.7% and the transverse average residual stress decreased from 102.71 MPa (tensile stress) to -18.33 MPa (compressive stress), the longitudinal average residual stress decreased from 114.87 MPa (tensile stress) to -84.64 MPa (compressive stress). The fracture surface has been appeared obvious shear lip marks and a few dimples. The element migrates at the fusion boundary between the Ni-based alloy overlayer and the austenitic stainless steel joint, which is leaded to form a local martensite zone and appear hot cracks. The welded joint is cooled by FA solidification mode, which is forming a large number of late and skeleton ferrite phase with an average microhardness of 190 H V and no obvious change in shear strength. The base metal is all austenitic phase with an average microhardness of 206 H V and shear strength of 696 MPa.

Keywords

Acknowledgement

This work was supported by the Natural Science Foundation of Gansu Province, China (No. 20JR5RA416), the National Natural Science Foundation of China (No.51605384), the Foundation of the Young Teachers in Lanzhou Jiaotong University (2017049).

References

  1. C.N. Zou, Q. Zhao, J.J. Chen, J. Li, Z. Yang, Q.P. Sun, J.L. Lu, G.X. Zhang, Natural gas in China: development trend and strategic forecast, Natural Gas Industry B, Sci. 5 (4) (2018) 380-390. https://doi.org/10.1016/j.ngib.2018.04.010
  2. M. Cesar, S. Arriaga, J. Bundschuh, Fernando Samaniego, Assessment of sub-marine geothermal resources and development of tools to quantify their energy potentials for environmentally sustainable development, Journal of Cleaner Production, Sci. 83 (2014) 21-32. https://doi.org/10.1016/j.jclepro.2014.07.040
  3. Q.Y. Liu, J. Qian, R. Barker, C. Wang, A. Neville, F. Pessu, Application of double loop electrochemical potentio-kinetic reactivation for characterizing the intergranular corrosion susceptibility of stainless steels and Ni-based alloys in solar nitrate salts used in CSP systems, Engineering Failure Analysis, Sci 129 (2021), 105717.
  4. M. Taylor, R.G. Ding, P. Mignanelli, M. Hardy, Oxidation behaviour of a developmental nickel-based alloy and the role of minor elements, Corrosion Science, Sci. 196 (2022), 110002.
  5. H.J. Yan, S.G. Tian, G.Q. Zhao, N. Tian, S.K. Zhang, Creep and damage of a Re/Ru-containing single crystal nickel-based alloy at high temperature, Mater. Sci. Eng.: A, Sci. 808 (2021), 140870.
  6. H. Arora, K.M. Basha, D.N. Abhishek, B. Devesh, Welding simulation of circumferential weld joint using TIG welding process, Mater. Today: Proceedings, Sci. 50 (2022) 923-929. https://doi.org/10.1016/j.matpr.2021.06.315
  7. R.F. Liu, J.C. Wang, Finite element analyses of the effect of weld overlay sizing on residual stresses of the dissimilar metal weld in PWRs, Nuclear Engineering and Design, Sci. 372 (2021), 110959.
  8. H.Y. Fu, Z.J. Chai, S.L. Han, D.H. Liu, Y.Q. Chang, Y.X. Chen, Y.F. Li, J.R. Zhang, Y. Xu, K. Zhang, H.B. Liao, X.Y. Wang, J.M. Chen, P.Y. Li, Effect of post-weld heat treatment on a friction stir welded joint between 9Cr-ODS and CLF-1 steels, Materials Characterization, Sci (2022), 111868.
  9. A. Sauraw, A.K. Sharma, D. Fydrych, S. Sirohi, A. Gupta, A. Wierczynska, et al., Study on microstructural characterization, mechanical properties and residual stress of gtaw dissimilar joints of p91 and p22 steels, Materials, Sci. 14 (2021) 6591.
  10. Z. Qin, B. Li, H. Zhang, T.Y.A. Wilfried, T. Gao, H. Xue, Effects of shot peening with different coverage on surface integrity and fatigue crack growth properties of 7B50-T7751 aluminum alloy, Engineering Failure Analysis, Sci 133 (2022), 106010.
  11. E. Maleki, S. Bagherifard, F. Sabouri, M. Bandini, M. Guagliano, Hybrid thermal, mechanical and chemical surface post-treatments for improved fatigue behavior of laser powder bed fusion AlSi10Mg notched samples, Surface and Coatings Technology, Sci 430 (2022), 127962.
  12. K.l. Yuan, Y. Sumi, Simulation of residual stress and fatigue strength of welded joints under the effects of ultrasonic impact treatment (UIT), International Journal of Fatigue, Sci. 92 (2016) 321-332. https://doi.org/10.1016/j.ijfatigue.2016.07.018
  13. Q. Zhang, M.Y. Li, B. Han, S.Y. Zhang, Y. Li, C.Y. Hu, Investigation on microstructures and properties of Al1.5CoCrFeMnNi high entropy alloy coating before and after ultrasonic impact treatment, Journal of Alloys and Compounds, Sci. 884 (2021), 160989.
  14. S.P. Chenakin, B.N. Mordyuk, N.I. Khripta, Surface characterization of a ZrTiNb alloy: effect of ultrasonic impact treatment, Applied Surface Science, Sci. 470 (2019) 44-55. https://doi.org/10.1016/j.apsusc.2018.11.116
  15. S.H. Qian, T.M. Zhang, Y.H. Chen, J.J. Xie, Y. Chen, T.S. Lin, H.X. Li, Effect of ultrasonic impact treatment on microstructure and corrosion behavior of friction stir welding joints of 2219 aluminum alloy, Journal of Materials Research and Technology, Sci. 18 (2022) 1631-1642. https://doi.org/10.1016/j.jmrt.2022.03.068
  16. B. Liu, Y.M. Yu, R.F. Li, J.Y. Gu, P. He, Effect of ultrasonic impact treatment on surface stress evaluation of laser cladding coating by using critically refracted longitudinal wave, Surface and Coatings Technology, Sci 421 (2021), 127484.
  17. D.A. Polonyankin, A.A. Fedorov, A.I. Blesman, S.N. Nesov, Structural coloration of AISI 321 steel surfaces textured by ultrasonic impact treatment, Optics & Laser Technology, Sci. 150 (2022), 107948.
  18. S.D. Ji, S.Y. Niu, J.G. Liu, Dissimilar Al/Mg alloys friction stir lap welding with Zn foil assisted by ultrasonic, Journal of Materials Science & Technology, Sci. 35 (2019) 1712-1718. https://doi.org/10.1016/j.jmst.2019.03.033
  19. X. Wang, C. L Xu, D.Y. Hu, C.Z. Li, C.G. Liu, Z.H. Tang, Effect of ultrasonic shot peening on surface integrity and fatigue performance of single-crystal superalloy, Journal of Materials Processing Technology, Sci. 296 (2021), 117209.
  20. L.Q. Tang, A. Ince, J. Zheng, Numerical modeling of residual stresses and fatigue damage assessment of ultrasonic impact treated 304L stainless steel welded joints, Engineering Failure Analysis, Sci 108 (2020), 104277.
  21. M.M. Sidorov, N.I. Golikov, Y.N. Saraev, Redistribution of residual stresses in girth weld of a pipe of strength class K60 after ultrasonic impact treatment, Procedia Structural Integrity, Sci 309 (2020) 149-153.
  22. J. Wang, Q. Sun, T. Zhang, et al., Arc stability indexes evaluation of ultrasonic wave-assisted underwater FCAW using electrical signal analysis, Int J Adv Manuf Technol. Sci. 103 (2019) 2593-2608. https://doi.org/10.1007/s00170-019-03463-1
  23. X.L. Zhao, F. He, K. Wang, Residual stress and simulation of 304-430 stainless steel dissimilar laser-welded joints incorporating materials heterogeneity, International Journal of Materials Research, Sci. 112 (7) (2021) 527-537. https://doi.org/10.1515/ijmr-2020-7943
  24. Y. Peng, J. Zhao, L.S. Chen, J. Dong, Residual stress measurement combining blind-hole drilling and digital image correlation approach, Journal of Constructional Steel Research, Sci. 176 (2021), 106346.
  25. E.V. Puymbroeck, W. Nagy, H. Fang, H.D. Backer, Determination of residual weld stresses with the incremental hole-drilling method in tubular steel bridge joints, Procedia Engineering, Sci. 213 (2018) 651-661. https://doi.org/10.1016/j.proeng.2018.02.061
  26. R. Gadallah, S. Tsutsumi, S. Tanaka, N.K. Osawa, Accurate evaluation of fracture parameters for a surface-cracked tubular T-joint taking welding residual stress into account, Marine Structures, Sci. 71 (2020), 102733.
  27. X. Zhao, K. Wang, Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint, International Journal of Materials Research, Sci. 110 (5) (2019) 466-475. https://doi.org/10.3139/146.111757
  28. M. Babaeeian, M. Mohammadimehr, Investigation of the time elapsed effect on residual stress measurement in a composite plate by DIC method, Optics and Lasers in Engineering, Sci 128 (2020), 106002.
  29. A. Mostafaei, C. Zhao, Y.N. He, S.R. Ghiaasiaan, B. Shi, S. Shao, N. Shamsaei, Z.H. Wu, N. Kouraytem, T. Sun, Defects and anomalies in powder bed fusion metal additive manufacturing, Current Opinion in Solid State and Materials Science, Sci. 26 (2022), 100974.
  30. B. Chen, W.P. Wu, M.X. Chen, Orientation dependence of microstructure deformation mechanism and tensile mechanical properties of Nickel-based single crystal superalloys: a molecular dynamics simulation, Comput. Methods Soc. Sci. 202 (2022), 111015.
  31. P.F. Ji, S.G. Liu, C.B. Shi, K.X. Xu, Z.G. Wang, B. H Chen, B. Li, Y.J. Yang, R.P. Liu, Synergistic effect of Zr addition and grain refinement on corrosion resistance and pitting corrosion behavior of single α-phase Ti-Zr-based alloys, Journal of Alloys and Compounds, Sci. 896 (2022), 163013.
  32. M.J. Perricone, J.N. DuPont, M.J. Cieslak, Solidification of hastelloy alloys:an alternative interpretation, Metallurgical and Materials Transactions A, 34A, Sci (2003) 1127-1132.
  33. Y.Y. Lin, F. Schleifer, M. Fleck, U. Glatzel, On the interaction between γ"precipitates and dislocation microstructures in Nb containing single crystal nickel-base alloys, Materials Characterization, Sci 165 (2020), 110389.
  34. J.S. Van Sluytman, T.M. Pollock, Optimal precipitate shapes in nickel-base γ-γ' alloys, Acta Materialia, Sci. 60 (2012) 1771-1783. https://doi.org/10.1016/j.actamat.2011.12.008
  35. I. Junya, S. Alireza, K. Toshihiko, Slip band formation at free surface of lath martensite in low carbon steel, Acta Materialia, Sci. 165 (2019) 129-141. https://doi.org/10.1016/j.actamat.2018.11.026
  36. Q.Z. Wang, M.L. Zhang, W.K. Liu, X. Wei, J.J. Xu, J.M. Chen, H. Lu, C. Yu, Study of type-II boundary behavior during SA508-3/EQ309L overlay weld interfacial failure process, Journal of Materials Processing Technology, Sci. 247 (2017) 64-72. https://doi.org/10.1016/j.jmatprotec.2017.04.009
  37. S.C. Yoo, K.J. Choi, C.B. Bahn, S.H. Kim, J.Y. Kim, J.H. Kim, Effects of thermal aging on the microstructure of Type-II boundaries in dissimilar metal weld joints, Journal of Nuclear Materials, Sci. 459 (2015) 5-12. https://doi.org/10.1016/j.jnucmat.2015.01.009
  38. J.G. Li, H. Li, Y. Liang, P.L. Liu, L.J. Yang, Y.W. Wang, Effects of heat input and cooling rate during welding on intergranular corrosion behavior of high nitrogen austenitic stainless steel welded joints, Corrosion Science, Sci. 166 (2020), 108445.
  39. O.I. Sleptsov, B.S. Ermakov, S.B. Ermakov, The effect of intergranular corrosion on the performance of welded joints during long-life performance, Procedia Structural Integrity, Sci 20 (2019) 130-135. https://doi.org/10.1016/j.prostr.2019.12.128
  40. S. Tom, M. Velu, Review on welding and fracture of nickel based superalloys, Mater. Today: Proceedings, Sci. 46 (2021) 7161-7169. https://doi.org/10.1016/j.matpr.2020.11.334
  41. U. Rahul, M Shirley Northover, H. Jazaeri, P. John Bouchard, Investigating plastic deformation around a reheat-crack in a 316H austenitic stainless steel weldment by misorientation mapping, Procedia Structural Integrity, Sci 2 (2016) 3501-3507. https://doi.org/10.1016/j.prostr.2016.06.436
  42. R. Saluja, K. M Moeed, Experimental investigation of solidification-mode and response surface modeling of ferrite-content in grade 304L pulse GMA welded plates, Mater. Today: Proceedings, Sci 18 (2019) 3876-3890. https://doi.org/10.1016/j.matpr.2019.07.327
  43. X. Li, F. Gao, J.H. Jiao, G.M. Cao, Y. Wang, Z.Y. Liu, Influences of cooling rates on delta ferrite of nuclear power 316H austenitic stainless steel, Materials Characterization, Sci 174 (2021), 111029.
  44. B.S. Kong, J. Shin, G.O. Subramanian, J. Chen, J.S. Yang, Evaluation of thermal ageing activation energy of d-ferrite in an austenitic stainless steel weld using nanopillar compression test, Scripta Materialia, Sci. 186 (2020) 236-241. https://doi.org/10.1016/j.scriptamat.2020.05.046
  45. Y.X. Yu, B.L. He, Z.M. Lv, S.Y. Lei, S.S. Xia, Experimental research on micro-hardness and wear resistance of MB8 magnesium alloy treated by ultrasonic impact, rare metal materials and engineering, Sci 46 (2017) 1798-1802.
  46. S. Zhandarov, E. Mader, An alternative method of determining the local interfacial shear strength from force-displacement curves in the pull-out and microbond tests, International Journal of Adhesion and Adhesives, Sci. 55 (2014) 37-42. https://doi.org/10.1016/j.ijadhadh.2014.07.006
  47. H.C. Park, K.H. Ahn, S.J. Lee, Path-dependent work and energy in large amplitude oscillatory shear flow, Journal of Non-Newtonian Fluid Mechanics, Sci. 251 (2018) 1-9. https://doi.org/10.1016/j.jnnfm.2017.10.005
  48. G.Q. Wang, M.K. Lei, D. M, GuoInteractions between surface integrity parameters on AISI 304 austenitic stainless steel components by ultrasonic impact treatment, Procedia CIRP, Sci. 45 (2016) 323-326. https://doi.org/10.1016/j.procir.2016.02.351
  49. S. Bagherzadeh, K. Abrinia, Q.Y. Han, Analysis of plastic deformation behavior of ultrafine-grained aluminum processed by the newly developed ultrasonic vibration enhanced ECAP: simulation and experiments, Journal of Manufacturing Processes, Sci. 50 (2020) 485-497. https://doi.org/10.1016/j.jmapro.2020.01.010