• 제목/요약/키워드: Audio Technology

검색결과 641건 처리시간 0.022초

Implementation of Tone Control Module in Anchor System for Improved Audio Quality

  • Seungwon Lee;Soonchul Kwon;Seunghyun Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.10-21
    • /
    • 2024
  • Recently, audio systems are changing the configuration of conventional sound reinforcement (SR) systems and public address (PA) systems by using audio over IP (AoIP), a technology that can transmit and receive audio signals based on internet protocol (IP). With the advancement of IP technology, AoIP technologies are leading the audio market and various technologies are being released. In particular, audio networks and control hierarchy over peer-to-peer (Anchor) technology based on AoIP is a system that transmits and receives audio signals over a wide bandwidth without an audio mixer, creating a novel paradigm for existing audio system configurations. Anchor technology forms an audio system by connecting audio sources and output equipment with On-site audio center (OAC), a device that can transmit and receive IP. Anchor's receiving OAC is capable of receiving and mixing audio signals transmitted from different IPs, making it possible to configure a novel audio system by replacing the conventional audio mixer. However, Anchor technology does not have the ability to provide audio effects to input devices such as microphones and instruments in the audio system configuration. Due to this, when individual control of each audio source is required, there is a problem of not being able to control the input signal, and it is impossible to individually affect a specific input signal. In this paper, we implemented a tone control module that can individually control the tone of the audio source of the input device using the audio processor core in the audio system based on Anchor technology, tone control for audio sources is possible through a tone control module connected to the transmitting OAC. As a result of the study, we confirmed that OAC receives the signal from the audio source, adjusts the tone and outputs it on the tone control module. Based on this, it was possible to solve problems that occurred in Anchor technology through transmitting OAC and tone control modules. In the future, we hope that the audio system configuration using Anchor technology will become established as the standard for audio equipment.

Implementation of Audio Effect Device for Anchor System

  • Seungwon Lee;Soonchul Kwon;Seunghyun Lee
    • International journal of advanced smart convergence
    • /
    • 제13권3호
    • /
    • pp.1-12
    • /
    • 2024
  • Recently, Audio systems transform the configuration of conventional sound reinforcement and public address systems using audio over internet protocol (AoIP), whereby audio signals are transmitted and received based on internet protocol (IP). Currently, AoIP technologies are leading the audio market, and various technologies have been released. Audio networks and the control hierarchy over peer-to-peer (Anchor) technology based on AoIP transmit and receive audio signals over a wide bandwidth without an audio mixer. Audio system based on Anchor technology is constructed by connecting the on-site audio center (OAC), a device that can transmit and receive audio sources and output equipment over IP. Receiving OAC of the Anchor technology can receive and mix audio signals transmitted from different IPs; consequently, novel audio systems can be configured by replacing conventional audio mixers. However, the Anchor technology does not have an equalizer function for improving the quality of audio equipment. Therefore, tone distortion may occur owing to signal loss between equipment, poor audio-signal clarity, and howling due to audio deformation according to different architectural structures and environments. In this study, we implemented an audio effect device capable of tone control using the Audio Processor Core. Using Anchor technology, tone control was realized through an audio effect device in the receiving OAC. The output of the incoming OAC was received by the audio effect device, which adjusted the tone and then outputted it. Thus, the tone issues in Anchor technology were overcome by the receiving OAC and audio effect devices. In future, audio system configurations using Anchor technology could be the standard for audio equipment.

체감형 미디어 서비스를 위한 공간음향 기술 동향 (Spatial Audio Technologies for Immersive Media Services)

  • 이용주;유재현;장대영;이미숙;이태진
    • 전자통신동향분석
    • /
    • 제34권3호
    • /
    • pp.13-22
    • /
    • 2019
  • Although virtual reality technology may not be deemed as having a satisfactory quality for all users, it tends to incite interest because of the expectation that the technology can allow one to experience something that they may never experience in real life. The most important aspect of this indirect experience is the provision of immersive 3D audio and video, which interacts naturally with every action of the user. The immersive audio faithfully reproduces an acoustic scene in a space corresponding to the position and movement of the listener, and this technology is also called spatial audio. In this paper, we briefly introduce the trend of spatial audio technology in view of acquisition, analysis, reproduction, and the concept of MPEG-I audio standard technology, which is being promoted for spatial audio services.

MPEG 오디오의 채널 확장 기술 (Channel Expansion Technology in MPEG Audio)

  • 방희석
    • 방송공학회논문지
    • /
    • 제16권5호
    • /
    • pp.714-721
    • /
    • 2011
  • MPEG 오디오에서는 오디오 신호의 효율적인 압축을 위해서 마스킹 효과, spectral band replication을 이용한 고주파 성분 합성, parametric stereo를 이용한 채널 확장 등의 기술을 이용하고 있다. 본 논문에서는 이 중 최신 기술에 해당하는 채널 확장 기술에 대해서 소개한다. 또한, MPEG 오디오 코덱 중 이 기술을 이용하는 HE-AAC v.2, MPEG Surround, Spatial Audio Object Coding(SAOC), Unified Speech and Audio Coding (USAC)에 대해 기술 소개 및 방송의 적용 예를 기술한다.

A Study on the Development for 3D Audio Generation Machine

  • Kim Sung-Eun;Kim Myong-Hee;Park Man-Gon
    • 한국멀티미디어학회논문지
    • /
    • 제8권6호
    • /
    • pp.807-813
    • /
    • 2005
  • The production and authoring of digital multimedia contents are most important fields in multimedia technology. Nowadays web-based technology and related multimedia software technology are growing in the IT industry and these technologies are evolving most rapidly in our life. The technology of digital audio and video processing is utilizing rapidly to improve quality of our life, Also we are more interested in high sense and artistic feeling in the music and entertainment areas by use of three dimensional (3D) digital sound technology continuously as well as 3D digital video technology. The service field of digital audio contents is increasing rapidly through the Internet. And the society of Internet users wants the audio contents service with better quality. Recently Internet users are not satisfying the sound quality with 2 channels stereo but seeking the high quality of sound with 5,] channels such as 3D audio of the movie films. But it might be needed proper hardware equipments for the service of 3D sound to satisfy this demand. In this paper, we expand the simple 3D audio generator developed and propose a web-based music bank by the software development of 3D audio generation player in 3D sound environment with two speakers minimizing hardware equipments, Also we believe that this study would contribute greatly to digital 3D sound service of high quality for music and entertainment mania.

  • PDF

가상현실을 위한 스테레오 스피커 기반 3차원 입체음향 재생 시스템 구현 (An Implementation of a 3D Audio Production System Using Stereo Loudspeakers for Virtual Reality)

  • 김용국;이영한;김홍국
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2006년도 추계학술대회 발표논문집
    • /
    • pp.113-116
    • /
    • 2006
  • In this paper, we first implement an audio playback system for virtual reality by providing 3D audio effects to listeners. In general, such a 3D audio playback system utilizes a sound localization technique using head related transfer function (HRTF) to generate 3D audio effect. However, the 3D audio effect is degraded due to the crosstalk in the stereo loudspeaker environment. To enhance the 3D sound effect, we implement the crosstalk cancellation technique proposed by Atal and Schroeder and apply it to the 3D audio system.

  • PDF

회의실의 명료성(STI) 향상을 위한 오디오신호 처리 및 시스템 설계 (Audio Signal Processing and System Design for improved intelligibility in Conference Room)

  • 강철용;이석주;조광연;이선희
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.225-232
    • /
    • 2017
  • 최근에 오디오 신호의 디지털 전송기술의 발전 및 디지털 전송기술을 이용한 오디오 네트워크 장비들의 출시가 이루어지고 있다. 이에 따라 음향시스템의 설계 및 시공에 있어서도 오디오 네트워크 기술 및 장비의 적용이 적극적으로 이루어지고 있다. 회의실이라는 공간은 다수의 참가자가 상호의견교환 및 의사전달을 하는 공간으로, 발언내용이 참석자에게 잘 전달되어야 한다. 마이크 및 스피커 등의 전기음향 장치를 이용하는 것 만 아니라 오디오 네트워크를 이용한 사례를 통해 회의실의 명료도 향상을 개선하고 실제 사례를 통해 오디오 네트워크를 이용한 음향시스템 설계의 적용과 향후 발전방향을 전망한다.

UHDTV를 위한 실감 오디오 재현 기술 (A Study on Realistic Sound Reproduction for UHDTV)

  • 장대영;서정일;이용주;유재현;박태진;이태진
    • 방송공학회논문지
    • /
    • 제20권1호
    • /
    • pp.68-81
    • /
    • 2015
  • 최근 부품기술 및 미디어 처리기술의 발전과 함께 HDTV를 이을 UHDTV 서비스가 곧 도래할 것이라는 예상이 기정사실화되고 있다. 이에 따라 HDTV에서 5.1채널 서라운드 사운드를 제공했던 오디오 기술도 UHDTV 시대의 도래와 함께 어떠한 서비스를 제공하여야 할지 고민하여야 할 시점에 와 있다. 그러나 현실은 HDTV의 5.1채널 사운드 포맷조차도 가정에서의 설치 및 유지의 어려움으로 인해 시장에서의 고전을 면치 못하고 있다. 한편, 영화 사운드 시장에서는 오랫동안 사용되고 있던 5.1, 7.1 채널 사운드 포맷이 돌비 ATMOS, IOSONO, AURO3D 등 천정 사운드와 객체기반 오디오를 포함하는 하이브리드 오디오 기술이 잇달아 도입되면서 일대 격변기를 맞이하고 있다. 이러한 객체기반 오디오 기술은 홈씨어터 및 방송 오디오 시장에서도 도입이 확실시되고 있는 실정이며, 이러한 오디오 기술의 변화는 유연성이 결여된 채널기반 오디오의 기술 발전 및 시장 성장의 활로를 개척하는 호기가 될 것으로 전망된다. 따라서 본 논문에서는 UHDTV 방송에 적합한 실감 오디오 기술에 대한 고찰과 이와 관련된 하이브리드 오디오 기술의 콘텐츠 포맷 및 가정에서의 재현 방안에 대해서 기술하고 향후 전망을 고찰해 보고자 한다.

A study on the audio/video integrated control system based on network

  • Lee, Seungwon;Kwon, Soonchul;Lee, Seunghyun
    • International journal of advanced smart convergence
    • /
    • 제11권4호
    • /
    • pp.1-9
    • /
    • 2022
  • The recent development of information and communication technology is also affecting audio/video systems used in industry. The audio/video device configuration system changes from analog to digital, and the network-based audio/video system control has the advantage of reducing costs in accordance with system operation. However, audio/video systems released on the market have limitations in that they can only control their own products or can only be performed on specific platforms (Windows, Mac, Linux). This paper is a study on a device (Network Audio Video Integrated Control: NAVICS) that can integrate and control multiple audio / video devices with different functions, and can control digitalized audio / video devices through network and serial communication. As a result of the study, it was confirmed that individual control and integrated control were possible through the protocol provided by each audio/video device by NAVICS, and that even non-experts could easily control the audio/video system. In the future, it is expected that network-based audio/video integrated control technology will become the technical standard for complex audio/video system control.

MPEG-I Immersive Audio 표준화 및 기술 동향 (Standardization of MPEG-I Immersive Audio and Related Technologies)

  • 장대영;강경옥;이용주;유재현;이태진
    • 전자통신동향분석
    • /
    • 제37권3호
    • /
    • pp.52-63
    • /
    • 2022
  • Immersive media, also known as spatial media, has become essential with the decrease in face-to-face activities in the COVID-19 pandemic era. Teleconference, metaverse, and digital twin have been developed with high expectations as immersive media services, and the demand for hyper-realistic media is increasing. Under these circumstances, MPEG-I Immersive Media is being standardized as a technologies of navigable virtual reality, which is expected to be launched in the first half of 2024, and the Audio Group is working to standardize the immersive audio technology. Following this trend, this article introduces the trend in MPEG-I immersive audio standardization. Further, it describes the features of the immersive audio rendering technology, focusing on the structure and function of the RM0 base technology, which was chosen after evaluating all the technologies proposed in the January 2022 "MPEG Audio Meeting."