• Title/Summary/Keyword: Au bump

Search Result 65, Processing Time 0.026 seconds

Studies on the Interfacial Reaction of Screen-Printed Sn-37Pb, Sn-3.5Ag and Sn-3.8Ag-0.7Cu Solder Bumps on Ni/Au and OSP finished PCB (Ni/Au 및 OSP로 Finish 처리한 PCB 위에 스크린 프린트 방법으로 형성한 Sn-37Pb, Sn-3.5Ag 및 Sn-3.8Ag-0.7Cu 솔더 범프 계면 반응에 관한 연구)

  • Nah, Hae-Woong;Son, Ho-Young;Paik, Kyung-Wook;Kim, Won-Hoe;Hur, Ki-Rok
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.750-760
    • /
    • 2002
  • In this study, three solders, Sn-37Pb, Sn-3.5Ag, and Sn-3.8Ag-0.7Cu were screen printed on both electroless Ni/Au and OSP metal finished micro-via PCBs (Printed Circuit Boards). The interfacial reaction between PCB metal pad finish materials and solder materials, and its effects on the solder bump joint mechanical reliability were investigated. The lead free solders formed a large amount of intermetallic compounds (IMC) than Sn-37Pb on both electroless Ni/Au and OSP (Organic Solderabilty Preservatives) finished PCBs during solder reflows because of the higher Sn content and higher reflow temperature. For OSP finish, scallop-like $Cu_{6}$ /$Sn_{5}$ and planar $Cu_3$Sn intermetallic compounds (IMC) were formed, and fracture occurred 100% within the solder regardless of reflow numbers and solder materials. Bump shear strength of lead free solders showed higher value than that of Sn-37Pb solder, because lead free solders are usually harder than eutectic Sn-37Pb solder. For Ni/Au finish, polygonal shaped $Ni_3$$Sn_4$ IMC and P-rich Ni layer were formed, and a brittle fracture at the Ni-Sn IMC layer or the interface between Ni-Sn intermetallic and P-rich Ni layer was observed after several reflows. Therefore, bump shear strength values of the Ni/Au finish are relatively lower than those of OSP finish. Especially, spalled IMCs at Sn-3.5Ag interface was observed after several reflow times. And, for the Sn-3.8Ag-0.7Cu solder case, the ternary Sn-Ni-Cu IMCs were observed. As a result, it was found that OSP finished PCB was a better choice for solders on PCB in terms of flip chip mechanical reliability.

Development of Polymer Elastic Bump Formation Process and Bump Deformation Behavior Analysis for Flexible Semiconductor Package Assembly (유연 반도체 패키지 접속을 위한 폴리머 탄성범프 범핑 공정 개발 및 범프 변형 거동 분석)

  • Lee, Jae Hak;Song, Jun-Yeob;Kim, Seung Man;Kim, Yong Jin;Park, Ah-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.31-43
    • /
    • 2019
  • In this study, polymer elastic bumps were fabricated for the flexible electronic package flip chip bonding and the viscoelastic and viscoplastic behavior of the polymer elastic bumps according to the temperature and load were analyzed using FEM and experiments. The polymer elastic bump is easy to deform by the bonding load, and it is confirmed that the bump height flatness problem is easily compensated and the stress concentration on thin chip is reduced remarkably. We also develop a spiral cap type and spoke cap type polymer elastic bump of $200{\mu}m$ diameter to complement Au metal cap crack phenomenon caused by excessive deformation of polymer elastic bump. The proposed polymer elastic bumps could reduce stress of metal wiring during bump deformation compared to metal cap bump, which is completely covered with metal wiring because the metal wiring on these bumps is partially patterned and easily deformable pattern. The spoke cap bump shows the lowest stress concentration in the metal wiring while maintaining the low contact resistance because the contact area between bump and pad was wider than that of the spiral cap bump.

Study of Metal(Au) Bump for Transverse Ultrasonic Bonding (금속(Au)범프의 횡초음파 접합 조건 연구)

  • Ji, Myeong-Gu;Song, Chun-Sam;Kim, Joo-Hyun;Kim, Jong-Hyeong
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.52-58
    • /
    • 2011
  • In this paper, the direct bonding process between FPCB and HPCB was studied. By using an ultrasonic horn which is mounted on the ultrasonic bonding machine, it is alternatively possible to bond the gold pads attached on the FPCB and HPCB at room temperature without an adhesive like ACA or NCA. The process condition for obtaining more bonding strength than 0.6 Kgf, which is commercially required, was carried out as 40 kHz of frequency, 0.6 MPa of bonding pressure and 2 second of bonding time. The peel off test was performed for evaluating bonding strength which results in more than 0.8 Kgf.

FLIP CHIP SOLDER BUMPING PROCESS BY ELECTROLESS NI

  • Lee, Chang-Youl;Cho, Won-Jong;Jung, Seung-Boo;Shur, Chang-Chae
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.456-462
    • /
    • 2002
  • In the present work, a low cost and fine pitch bumping process by electroless Ni/immersion Au UBM (under bump metallurgy) and stencil printing for the solder bump on the Al pad is discussed. The Chip used this experimental had an array of pad 14x14 and zincate catalyst treatment is applied as the pretreatment of Al bond pad, it was shown that the second zincating process produced a dense continuous zincating layer compared to first zincating. Ni UBM was analyzed using Scanning electron microscopy, Energy dispersive x-ray, Atomic force microscopy, and X-ray diffractometer. The electroless Ni-P had amorphous structures in as-plated condition. and crystallized at 321 C to Ni and Ni$_3$P. Solder bumps are formed on without bridge or missing bump by stencil print solder bump process.

  • PDF

Characteristics of Reliability for Flip Chip Package with Non-conductive paste (비전도성 접착제가 사용된 플립칩 패키지의 신뢰성에 관한 연구)

  • Noh, Bo-In;Lee, Jong-Bum;Won, Sung-Ho;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.9-14
    • /
    • 2007
  • In this study, the thermal reliability on flip chip package with non-conductive pastes (NCPs) was evaluated under accelerated conditions. As the number of thermal shock cycle and the dwell time of temperature and humidity condition increased, the electrical resistance of the flip chip package with NCPs increased. These phenomenon was occurred by the crack between Au bump and Au bump and the delamination between chip or substrate and NCPs during the thermal shock and temperature and humidity tests. And the variation of electrical resistance during temperature and humidity test was larger than that during thermal shock test. Therefore it was identified that the flip chip package with NCPs was sensitive to environment with moisture.

  • PDF

Formation of Sn-Cu Solder Bump by Electroplating for Flip Chip (플립칩용 Sn-Cu 전해도금 솔더 범프의 형성 연구)

  • 정석원;강경인;정재필;주운홍
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.39-46
    • /
    • 2003
  • Sn-Cu eutectic solder bump was fabricated by electroplating for flip chip and its characteristics were studied. A Si-wafer was used as a substrate and the UBM(Under Bump Metallization) of Al(400 nm)/Cu(300 nm)/Ni(400 nm)/Au(20 nm) was coated sequentially from the substrate to the top by an electron beam evaporator. The experimental results showed that the plating ratio of the Sn-Cu increased from 0.25 to 2.7 $\mu\textrm{m}$/min with the current density of 1 to 8 A/d$\m^2$. In this range of current density the plated Sn-Cu maintains its composition nearly constant level as Sn-0.9∼1.4 wt%/Cu. The solder bump of typical mushroom shape with its stem diameter of 120 $\mu\textrm{m}$ was formed through plating at 5 A/d$\m^2$ for 2 hrs. The mushroom bump changed its shape to the spherical type of 140 $\mu\textrm{m}$ diameter by air reflow at $260^{\circ}C$. The homogeneity of chemical composition for the solder bump was examined, and Sn content in the mushroom bump appears to be uneven. However, the Sn distributed more uniformly through an air reflow.

  • PDF

A Study on Evaluation of Shear Strength for Pb-free Solder Joint with Ni-P/Au UBM (Ni-P/Au UBM을 갖는 Pb-free 솔더 접합부의 전단강도 평가에 관한 연구)

  • Cho, Seong-Keun;Yang, Sung-Mo;Yu, Hyo-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.187-192
    • /
    • 2011
  • UBM(Under Bump Metallurgy) is very important for successful realization of Flip-Chip technology. In this study, it is investigated the interfacial reactions between various Sn-Ag solder alloys and Ni-P/Au UBM and Cu plate finish. It is also evaluated the shear strength by using the micro shear-punch test method for Sn-37Pb alloy, binary and ternary alloys of environment-friendly Pb-free solder alloys which are applied in the electronic packages. In terms of interfacial microstructure, the Pb-free solder joints have thicker IMCs than the Sn-Pb solder joints. The thickness of IMC is related to Reflow time. The IMC has been observed to grow with the increase in Reflow time. As a result of the shear test, in case of Max. shear strength, Pb-free solder showed the highest strength value and Sn-37Pb showed the lowest strength value 10 be generally condition of Reflow time.

Ultrasonic Bonding of Au Stud Flip Chip Bump on Flexible Printed Circuit Board (연성인쇄회로기판 상에 Au 스터드 플립칩 범프의 초음파 접합)

  • Koo, Ja-Myeong;Kim, Yu-Na;Lee, Jong-Bum;Kim, Jong-Woong;Ha, Sang-Su;Won, Sung-Ho;Suh, Su-Jeong;Shin, Mi-Seon;Cheon, Pyoung-Woo;Lee, Jong-Jin;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.79-85
    • /
    • 2007
  • This study was focused on the feasibility of ultrasonic bonding of Au stud flip chip bumps on the flexible printed circuit board (FPCB) with three different surface finishes: organic solderability preservative (OSP), electroplated Au and electroless Ni/immersion Au (ENIG). The Au stud flip chip bumps were successfully bonded to the bonding pads of the FPCBs, irrespective of surface finish. The bonding time strongly affected the joint integrity. The shear force increased with increasing bonding time, but the 'bridge' problem between bumps occurred at a bonding time over 2 s. The optimum condition was the ultrasonic bonding on the OSP-finished FPCB for 0.5 s.

  • PDF

Overview on Flip Chip Technology for RF Application (RF 응용을 위한 플립칩 기술)

  • 이영민
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.61-71
    • /
    • 1999
  • The recent trend toward higher frequencies, miniaturization and lower-cost in wireless communication equipment is demanding high density packaging technologies such flip chip interconnection and multichip module(MCM) as a substitute of conventional plastic package. With analyzing the recently reported research results of the RF flip chip, this paper presents the technical issues and advantages of RF flip chip and suggest the flip chip technologies suitable for the development stage. At first, most of RF flip chips are designed in a coplanar waveguide line instead of microstrip in order to achieve better electrical performance and to avoid the interaction with a substrate. Secondly, eliminating wafer back-side grinding, via formation, and back-side metallization enables the manufacturing cost to be reduced. Finally, the electrical performance of flip chip bonding is much better than that of plastic package and the flip chip interconnection is more suitable for Transmit/Receiver modules at higher frequency. However, the characterization of CPW designed RF flip chip must be thoroughly studied and the Au stud bump bonding shall be suggested at the earlier stage of RF flip chip development.

  • PDF