DOI QR코드

DOI QR Code

Development of Polymer Elastic Bump Formation Process and Bump Deformation Behavior Analysis for Flexible Semiconductor Package Assembly

유연 반도체 패키지 접속을 위한 폴리머 탄성범프 범핑 공정 개발 및 범프 변형 거동 분석

  • Lee, Jae Hak (Dept. of Ultra-Precision Machines and Systems, Advanced Manufacturing Systems Research Division Korea Institute of Machinery and Materials (KIMM)) ;
  • Song, Jun-Yeob (Dept. of Ultra-Precision Machines and Systems, Advanced Manufacturing Systems Research Division Korea Institute of Machinery and Materials (KIMM)) ;
  • Kim, Seung Man (Dept. of Ultra-Precision Machines and Systems, Advanced Manufacturing Systems Research Division Korea Institute of Machinery and Materials (KIMM)) ;
  • Kim, Yong Jin (Dept. of Ultra-Precision Machines and Systems, Advanced Manufacturing Systems Research Division Korea Institute of Machinery and Materials (KIMM)) ;
  • Park, Ah-Young (Dept. of Ultra-Precision Machines and Systems, Advanced Manufacturing Systems Research Division Korea Institute of Machinery and Materials (KIMM))
  • 이재학 (한국기계연구원 초정밀시스템연구실) ;
  • 송준엽 (한국기계연구원 초정밀시스템연구실) ;
  • 김승만 (한국기계연구원 초정밀시스템연구실) ;
  • 김용진 (한국기계연구원 초정밀시스템연구실) ;
  • 박아영 (한국기계연구원 초정밀시스템연구실)
  • Received : 2019.06.12
  • Accepted : 2019.06.25
  • Published : 2019.06.30

Abstract

In this study, polymer elastic bumps were fabricated for the flexible electronic package flip chip bonding and the viscoelastic and viscoplastic behavior of the polymer elastic bumps according to the temperature and load were analyzed using FEM and experiments. The polymer elastic bump is easy to deform by the bonding load, and it is confirmed that the bump height flatness problem is easily compensated and the stress concentration on thin chip is reduced remarkably. We also develop a spiral cap type and spoke cap type polymer elastic bump of $200{\mu}m$ diameter to complement Au metal cap crack phenomenon caused by excessive deformation of polymer elastic bump. The proposed polymer elastic bumps could reduce stress of metal wiring during bump deformation compared to metal cap bump, which is completely covered with metal wiring because the metal wiring on these bumps is partially patterned and easily deformable pattern. The spoke cap bump shows the lowest stress concentration in the metal wiring while maintaining the low contact resistance because the contact area between bump and pad was wider than that of the spiral cap bump.

본 연구에서는 유연한 접속부를 갖는 유연전자 패키지 플립칩 접속을 위해 폴리머 탄성범프를 제작하였으며, 범프의 온도 및 하중에 따른 폴리머 탄성 범프의 점탄성 및 점소성 거동을 해석 및 실험적으로 분석하고 비교 평가하였다. 폴리머 탄성 범프는 하중에 의한 변형이 용이하여 범프 높이 평탄도 오차의 보정이 용이할 뿐만 아니라 소자가 형성된 칩에 가해지는 응력 집중이 감소하는 것을 확인하였다. 폴리머 탄성 범프의 과도한 변형에 따른 Au Metal Cap Crack 현상을 보완하여 $200{\mu}m$ 직경의 Spiral Cap Type, Spoke Cap type 폴리머 탄성 범프 형성 기술을 개발하였다. 제안된 Spoke Cap, Spiral Cap 폴리머 탄성 범프는 폴리머 범프 전체를 금속 배선이 덮고 있는 Metal Cap 범프에 비해 범프 변형에 의한 응력 발생이 적음을 확인할 수 있으며 이는 폴리머 범프 위의 금속 배선이 부분적으로 패터닝되어 있어 쉽게 변형될 수 있는 구조이므로 응력이 완화되는데 기인하는 것으로 판단된다. Spoke cap type 범프는 패드 접촉부와 전기적 접속을 하는 금속 배선 면적이 Spiral Cap type 범프에 비해 넓어 접촉 저항을 유지하면서 동시에 금속 배선에 응력 집중이 가장 낮은 결과를 확인하였다.

Keywords

MOKRBW_2019_v26n2_31_f0001.png 이미지

Fig. 1. Overview of PEB face-down interconnection process.

MOKRBW_2019_v26n2_31_f0002.png 이미지

Fig. 2. Von-Mises stress analysis of single bump package at 3-μm displacement at 25℃.

MOKRBW_2019_v26n2_31_f0003.png 이미지

Fig. 3. Von-Mises stress analysis of single bump package at 3-μm displacement at 225℃.

MOKRBW_2019_v26n2_31_f0004.png 이미지

Fig. 4. Deformation behavior analysis of polymer elastic bump w.r.t. bonding force and temperature.

MOKRBW_2019_v26n2_31_f0005.png 이미지

Fig. 5. Elastic polymer bump design with various type of bump metal pattern.

MOKRBW_2019_v26n2_31_f0006.png 이미지

Fig. 6. Elastic deformation shape of various type of PEB w.r.t. temperature.

MOKRBW_2019_v26n2_31_f0007.png 이미지

Fig. 6. Continued.

MOKRBW_2019_v26n2_31_f0008.png 이미지

Fig. 7. Von-Mises stress of various bump metal patterns w.r.t. temperature.

MOKRBW_2019_v26n2_31_f0009.png 이미지

Fig. 7. Continued.

MOKRBW_2019_v26n2_31_f0010.png 이미지

Fig. 8. Calculated Polymer elastic bump contact area variation w.r.t. bump metal pattern and bonding force per bump.

MOKRBW_2019_v26n2_31_f0011.png 이미지

Fig. 9. Fabrication process of polymer elastic bump chip.

MOKRBW_2019_v26n2_31_f0012.png 이미지

Fig. 10. Shapes of polymer bumps after thermal reflow process depending on film thickness.

MOKRBW_2019_v26n2_31_f0013.png 이미지

Fig. 11. Polymer elastic bump shape before and after thermal reflow depending on photoresist volume.

MOKRBW_2019_v26n2_31_f0014.png 이미지

Fig. 12. Polymer bump diameter and height measured after thermal reflow process at photoresist thickness of 28 μm.

MOKRBW_2019_v26n2_31_f0015.png 이미지

Fig. 13. Fabricated Polymer elastic bump(PEB) shape by thermal reflow process.

MOKRBW_2019_v26n2_31_f0016.png 이미지

Fig. 14. Experimental set-up for investigation of polymer elastic bump deformation behavior using micro-tribometer.

MOKRBW_2019_v26n2_31_f0017.png 이미지

Fig. 15. CCD Images of contact area variation of polymer elastic bump due to bump deformation w.r.t. bump load at 25℃.

MOKRBW_2019_v26n2_31_f0018.png 이미지

Fig. 16. Results of deformation behavior of circle bump cap with a microtribometer test according to temperature and load.

MOKRBW_2019_v26n2_31_f0019.png 이미지

Fig. 17. Metal pattern crack images and 3D shape profile of polymer elastic bumps w.r.t temperature.

MOKRBW_2019_v26n2_31_f0020.png 이미지

Fig. 17. Continued.

MOKRBW_2019_v26n2_31_f0021.png 이미지

Fig. 18. Method for measuring contact resistance and measured contact resistance depending on bump cap shape.

MOKRBW_2019_v26n2_31_f0022.png 이미지

Fig. 19. Cross-section images of bonded glass chip and FPCB with polymer elastic bump.

Table 1. Contact diameter depending on temperature and load [μm]

MOKRBW_2019_v26n2_31_t0001.png 이미지

References

  1. J. V. D. Brand, M. de Kok, M. Koetse, M. Cauwe, R. Verplancke, F. Bossuyt, M. Jablonski, and Jan Vanfleteren, "Flexible and stretchable electronics for wearable health devices", Solid-State Electronics, 113, 116 (2015). https://doi.org/10.1016/j.sse.2015.05.024
  2. D. H. Park, K. S. Han, and T. S. Oh, "Comparison of flipchip bonding characteristics on rigid, flexible, and stretchable substrates: Part II. Flip-chip bonding on compliant substrates", Materials Transactions, 58(8), 1217 (2017). https://doi.org/10.2320/matertrans.M2017066
  3. J. V. D. Brand, J. D. Baets, T. V. Mol, and A. Dietzel, "Systems-in-foil-Devices, fabrication processes and reliability issues", Microelectronics Reliability, 48(8-9), 1123 (2008). https://doi.org/10.1016/j.microrel.2008.06.030
  4. J. N. Burghartz, "Ultra-Thin Chip Technology and Applications", pp.141-157, Springer, New York (2011).
  5. J. K. Chen, Z. L. Xu, Y. A. Huang, Y. Q. Duan, and Z. P. Yin, "Analytical investigation on thermal-induced warpage behavior of ultrathin chip-on-flex (UTCOF) assembly", Science China Technological Sciences, 59(11), 1646 (2016). https://doi.org/10.1007/s11431-016-0588-6
  6. M. Feil, C. Adler, D. Hemmetzberger, M. Konig, and K. Bock , "The challenge of ultra thin chip assembly", Proc. 54th IEEE Electronic Components and Technology Conference (ECTC), Las Vegas, 35, IEEE Components and Manufacturing Technology Society (2004).
  7. T. H. Lee, K. H. Shin, and Y. J. Kim, "Flexible and Embedded Packaging of Thinned Silicon Chip", J. Microelectron. Pacag. Soc., 11(1), 29 (2004).
  8. J. M. Koo, Y. N. Kim, J. B. Lee, J.W. Kim, S. S. Ha, S. H. Won, S. J. Suh, M. S. Shin, P. W. Cheon, and S. B. Jung, "Ultrasonic bonding of Au stud flip chip bump on flexible printed circuit board", J. Microelectron. Pacag. Soc., 14(4), 79 (2007).

Cited by

  1. 전해 도금을 이용한 높은 접착 특성을 갖는 섬유 기반 웨어러블 디바이스 제작 vol.28, pp.1, 2019, https://doi.org/10.6117/kmeps.2021.28.1.055