DOI QR코드

DOI QR Code

Chemically Bonded Thermally Expandable Microsphere-silica Composite Aerogel with Thermal Insulation Property for Industrial Use

  • Lee, Kyu-Yeon (Department of Materials Science and Engineering, Yonsei University) ;
  • Phadtare, Varsha D. (Department of Materials Science and Engineering, Yonsei University) ;
  • Choi, Haryeong (Department of Materials Science and Engineering, Yonsei University) ;
  • Moon, Seung Hwan (Enterprise Research Institute, Eslin Corporation) ;
  • Kim, Jong Il (Enterprise Research Institute, Eslin Corporation) ;
  • Bae, Young Kwang (Enterprise Research Institute, Eslin Corporation) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
  • Received : 2019.06.10
  • Accepted : 2019.06.28
  • Published : 2019.06.30

Abstract

Thermally expandable microsphere and aerogel composite was prepared by chemical compositization. Microsphere can produce synergies with aerogel, especially an enhancement of mechanical property. Through condensation between sulfonated microsphere and hydrolyzed silica sol, chemically-connected composite aerogel could be prepared. The presence of hydroxyl group on the sulfonated microsphere was observed, which was the prime functional group of reaction with hydrolyzed silica sol. Silica aerogel-coated microsphere was confirmed through microstructure analysis. The presence of silicon-carbon absorption band and peaks from composite aerogel was observed, which proved the chemical bonding between them. A relatively low thermal conductivity value of $0.063W/m{\cdot}K$ was obtained.

Keywords

MOKRBW_2019_v26n2_23_f0001.png 이미지

Fig. 1. Synthesis process of sulfonation of thermally expandable microsphere.

MOKRBW_2019_v26n2_23_f0002.png 이미지

Fig. 2. Synthesis process of sulfonation of microsphere and thermally expandable microsphere-silica composite aerogel.

MOKRBW_2019_v26n2_23_f0003.png 이미지

Fig. 3. FT-IR spectra of pristine microsphere (black line) and functionalized microspheres (red line).

MOKRBW_2019_v26n2_23_f0004.png 이미지

Fig. 4. FT-IR spectra of (a) pristine silica aerogel and (b) thermally expandable microsphere-silica composite aerogel.

MOKRBW_2019_v26n2_23_f0005.png 이미지

Fig. 5. SEM images of (a) thermally expandable microsphere, (b) pristine silica aerogel, (c) thermally expandable microsphere-silica composite aerogel and (d) the EDS result of thermally expandable microsphere-silica composite aerogel.

MOKRBW_2019_v26n2_23_f0006.png 이미지

Fig. 6. TGA result of pristine thermally expandable microsphere and thermally expandable microsphere-silica composite aerogel.

Table 1. Thermal conductivity of pristine silicone resin and mixture of silicone resin and thermally expandable microsphere-silica composite aerogel

MOKRBW_2019_v26n2_23_t0001.png 이미지

References

  1. Z.-L. Yu, N. Yang, V. Apostolopoulou-Kalkavoura, B. Qin, Z.-Y. Ma, W.-Y. Xing, C. Qiao, L. Bergstrom, M. Antonietti, and S.-H. Yu, "Fire-retardant and thermally insulating phenolic-silica aerogels", Angew. Chem. Int. Ed., 57(17), 4538 (2018). https://doi.org/10.1002/anie.201711717
  2. Y. Lei, X. Chen, H. Song, Z. Hu, and B. Cao, "Improvement of thermal insulation performance of silica aerogels by $Al_2O_3$ powders doping", Ceram. Int., 43(14), 10799 (2017). https://doi.org/10.1016/j.ceramint.2017.05.100
  3. T. Feczko, L. Trif, and D. Horak, "Latent heat storage by silica-coated polymer beads containing organic phase change materials", Sol. Energy, 132, 405 (2016). https://doi.org/10.1016/j.solener.2016.03.036
  4. L. M. Sanz-Moral, A. Aho, N. Kumar, K. Eranen, M. Peurla, J. Peltonen, D. Y. Murzin, and T. Salmi, "Synthesis and characterization Ru-C/$SiO_2$ aerogel catalysts for sugar hydrogenation reactions", Catal. Lett., 148, 3514 (2018). https://doi.org/10.1007/s10562-018-2556-4
  5. G. Vamvounis, M. Jonsson, E. Malmstrom, A. Hult, "Synthesis and properties of poly(3-n-dodecylthiophene) modified thermally expandable microspheres", Eur. Polym. J., 49, 1503 (2013). https://doi.org/10.1016/j.eurpolymj.2013.01.010
  6. S. Ries, A. Spoerrer, and V. Altstaedt, "Foam injection molding of thermoplastic elastomers: Blowing agents, foaming process and characterization of structural foams", Proc. AIP Conf., 1593(1), 401 (2014).
  7. S.-Y. Chen, Z.-C. Sun, L.-H. Li, Y.-H. Xiao, and Y.-M. Yu, "Preparation and characterization of conducting polymercoated thermally expandable microspheres", Chin. Chem. Lett., 28, 658 (2017). https://doi.org/10.1016/j.cclet.2016.11.005
  8. M. Jonsson, D. Nystrom, O. Nordin, and E. Malmstrom, "Surface modification of thermally expandable microspheres by grafting poly(glycidyl methacrylate) using ARGET ATRP", Eur. Polym. J., 45, 2374 (2009). https://doi.org/10.1016/j.eurpolymj.2009.05.002
  9. A. Schmid, L. R. Sutton, S. P. Armes, P. S. Bain, and G. Manfre, "Synthesis and evaluation of polypyrrole-coated thermally-expandable microspheres: an improved approach to reversible adhesion", Soft Matter, 5(2), 407 (2009). https://doi.org/10.1039/B811246K
  10. J. F. Illescas, and M. J. Mosquera, "Producing surfactant-synthesized nanomaterials in situ on a building substrate, without volatile organic compounds", ACS Appl. Mater. Interfaces., 4(8), 4259 (2012). https://doi.org/10.1021/am300964q
  11. C. Zhang, C. Zhang, R. Huang, and X. Gu, "Effects of hollow microspheres on the thermal insulation of polysiloxane foam", J. Appl. Polym. Sci., 134(18), 44778 (2017).
  12. H. E. Cingil, J. A. Balmer, S. P. Armes, and P. S. Bain, "Conducting polymer-coated thermally expandable microspheres", Polym. Chem., 1(8), 1323 (2010). https://doi.org/10.1039/c0py00108b
  13. S. Grama, Z. Plichta, M. Trchova, J. Kovarova, M. Benes, and D. Horak, "Monodisperse macroporous poly(glycidyl methacrylate) microspheres coated with silica: design, preparation and characterization", React. Funct. Polym., 77, 11 (2014). https://doi.org/10.1016/j.reactfunctpolym.2014.01.010
  14. H. Aglan, S. Shebl, M. Morsy, M. Calhoun, H. Harding, and M. Ahmad, "Strength and toughness improvement of cement binders using expandable thermoplastic microspheres", Constr. Build. Mater., 23(8), 2856 (2009). https://doi.org/10.1016/j.conbuildmat.2009.02.031
  15. Y. Lu, J. Broughton, and P. Winfield, "Surface modification of thermally expandable microspheres for enhanced performance of disbondable adhesive", Int. J. Adhes. Adhes., 66, 33 (2016). https://doi.org/10.1016/j.ijadhadh.2015.12.007
  16. M. Jonsson, O. Nordin, A. L. Kron, and E. Malmstrom, "Thermally expandable microspheres with excellent expansion characteristics at high temperature", Journal of applied polymer science, 117(1), 384 (2010). https://doi.org/10.1002/app.31543
  17. S. Mulik, C. Sotiriou-Leventis, G. Churu, H. Lu, and N. Leventis, "Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization", Chem. Mater., 20, 5035 (2008). https://doi.org/10.1021/cm800963h
  18. X. Hu, K. Littrel, S. Ji, D. G. Pickles, and W. M. Risen, "Characterization of silica-polymer aerogel composites by small-angle neutron scattering and transmission electron microscopy", J. Non-Cryst. Solids., 288, 184 (2001). https://doi.org/10.1016/S0022-3093(01)00625-1
  19. Z. Li, X. Cheng, S. He, D. Huang, H. Bi, and H. Yang, "Preparation of ambient pressure dried MTMS/TEOS co-precursor silica aerogel by adjusting NH4OH concentration", Mater. Lett., 129, 12 (2014). https://doi.org/10.1016/j.matlet.2014.05.024
  20. N. Husing, and U. Schubert, "Aerogels - airy materials: chemistry, structure, and properties", Angew. Chem., Int. Ed., 37, 22 (1998). https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I
  21. D. B. Mahadik, H.-N.-R. Jung, Y. K. Lee, K.-Y. Lee, and H.-H. Park, "Elastic and Superhydrophobic Monolithic Methyltrimethoxysilane-based Silica Aerogels by Two-step Sol-gel Process", J. Microelectron. Packag. Soc., 23(1), 35 (2016). https://doi.org/10.6117/kmeps.2016.23.1.035
  22. K.-Y. Lee, H.-N.-R. Jung, D. B. Mahadik, and H.-H. Park, "Characterization of mechanical property change in polymer aerogels depending on the ligand structure of acrylate monomer", J. Microelectron. Packag. Soc., 23(3), 1 (2016). https://doi.org/10.6117/kmeps.2016.23.3.001
  23. H.-Y. Nah, H.-N.-R. Jung, K.-Y. Lee, Y. S. Ku, and H.-H. Park, "Effect of acid catalyst kinds on the pore structural characteristics of water glass based silica aerogel", J. Microelectron. Packag. Soc., 24(3), 13 (2017). https://doi.org/10.6117/kmeps.2017.24.3.013
  24. Y. Kim, T. Kim, J. G. Shim, and H.-H. Park, "The effect of acetonitrile on the texture properties of sodium silicate based silica aerogels", J. Microelectron. Packag. Soc., 25(4), 143 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.143
  25. D. Ge, L. Yang, Y. Li, and J. Zhao, "Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite", J. Non-Cryst. Solids., 355, 2610 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.09.017
  26. N. Kuthirummal, A. Dean, C. Yao, and W. Risen, "Photo-formation of gold nanoparticles: photoacoustic studies on solid monoliths of Au(III)-chitosan-silica aerogels", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 70(3), 700 (2008). https://doi.org/10.1016/j.saa.2007.09.011
  27. J. T. Seo, S. M. Ma, Q. Yang, L. Creekmore, H. Brown, R. Battle, K. Lee, A. Jackson, T. Skyles, B. Tabibi, K. P. Yoo, S. Y. Kim, S. S. Jung, and M. Namkung, "Large optical nonlinearity of highly porous silica nanoaerogels in the nanosecond time domain", J. Korean Phys. Soc., 48, 1395 (2006).
  28. H. M. Kim, Y. J. Noh, J. Yu, S. Y. Kim, and J .R. Youn, "Silica aerogel/polyvinyl alcohol (PVA) insulation composites with preserved aerogel pores using interfaces between the superhydrophobic aerogel and hydrophilic PVA solution", Compos. Pt. A-Appl. Sci. Manuf., 75, 39 (2015). https://doi.org/10.1016/j.compositesa.2015.04.014
  29. A. Stojanovic, S. Zhao, E. Angelica, W. J. Malfait, and M. M. Koebel, "Three routes to superinsulating silica aerogel powder", J. Sol-Gel Sci. Technol., 90(1), 57 (2019). https://doi.org/10.1007/s10971-018-4879-4
  30. H. M. Kim, H. S. Kim, S. Y. Kim, and J. R. Youn, "Silica aerogel/epoxy composites with preserved aerogel pores and low thermal conductivity", e-Polymers, 15(2), 111 (2015). https://doi.org/10.1515/epoly-2014-0165
  31. P. Alves, J. F. J. Coelho, J. Haack, A. Rota, A. Bruinink, and M. H. Gil, "Surface modification and characterization of thermoplastic polyurethane", Eur. Polym. J., 45, 1412 (2009). https://doi.org/10.1016/j.eurpolymj.2009.02.011
  32. M. Ochoa, A. Lamy-Mendes, A. Maia, A. Portugal, and L. Duraes, "Influence of structure-directing additives on the properties of poly(methylsilsesquioxane) aerogel-like materials", Gels, 5(1), 6 (2019). https://doi.org/10.3390/gels5010006
  33. H. Lee, D. Lee, J. Cho, Y.-O. Kim, S. Lim, S. Youn, Y.-C. Jung, S.-Y. Kim, and D.-G. Seong, "Super-insulating, flameretardant, and flexible poly(dimethylsiloxane) composites based on silica aerogel", Compos. Pt. A-Appl. Sci. Manuf., 123, 108 (2019). https://doi.org/10.1016/j.compositesa.2019.05.004
  34. K.-Y. Lee, H,-Y, Nah, H, Choi, V, G. Parale, and H.-H. Park, "Methyltrimethoxysilane silica aerogel composite with carboxyl-functionalised multi-wall carbon nanotubes", Int. J. Nanotechnol., 15(6-7), 587 (2018). https://doi.org/10.1504/IJNT.2018.096349

Cited by

  1. 벤젠 유기물 도입에 따른 실리카 기반 에어로겔의 소수성 및 기계적 특성 연구 vol.27, pp.4, 2019, https://doi.org/10.6117/kmeps.2020.27.4.135
  2. 주석산화물 에어로겔의 Graphene Oxide 첨가에 따른 광촉매적 Rhodamine B 분해 vol.28, pp.1, 2021, https://doi.org/10.6117/kmeps.2021.28.1.061