• Title/Summary/Keyword: Attenuation Relations

Search Result 29, Processing Time 0.024 seconds

Stochastic ground-motion evaluation of the offshore Uljin Earthquake (울진앞바다 지진( '04. 5. 29, M=5.2)의 추계학적 지진동 평가)

  • Yun, Kwan-Hee;Park, Dong-Hee;Choi, Weon-Hack;Chang, Chun-Jung
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.18-25
    • /
    • 2005
  • Stochastic ground-motion method is adopted to simulate horizontal PGA values for the offshore Uljin earthquake recorded at nationwide seismic stations. For this purpose, the Fourier spectra are calculated at every stations based on comprehensive results of wave propagation and site effect which were previously revealed through inversion process applied to large accumulated spectral D/B. In addition, the apparent source spectrum of the offshore Uljin earthquake is estimated by removing the path and site response from the observed spectra. The distance dependent time-duration model is revised by iteratively fitting the PGA values generated by using the raw spectra data to the observed PGA data. The stochastic ground-motion method predicts the observed PGA values within a error of ${\sigma}_{log10}=0.1$. Transfer functions of a site relative to another site are estimated based on the error residual of the inversion results and used to convert PGA values at multiple stations to expected PGA values at a reference station of TJN. The converted PGA values can be used as basic data to evaluate the ground-motion attenuation relations developed for seismic hazard analysis that concerns the large damaging earthquakes.

  • PDF

디이젤 機關의 燃燒騷音에 관한 硏究

  • 박희대;이성로
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.362-367
    • /
    • 1987
  • Cylinder pressure level is defined the value of sound pressure level derived from relations of pressure and frequency which are obtained Fourier series expansion of cylinder pressure. CPL is alone in general use in combustion analysis without regarding attenuation coefficient determined by engine structure because it is almost constant in various kinds of engines. Combustion pressure fluctuation and influence of CPL was investigated in this paper using Wiebe combustion function superposition th obtain the effect of premixed and diffusive combustion. The results are as follow. (1) Influence of combustion maximum pressure(P$\sub$max/) on CPL is correspond with total energy per cycle well. (2) P$\sub$max/, .DELTA.P$\sub$max/, (dp/d.theta.)$\sub$max/ and (d$\^$2/p/d.theta.$\^$2/)$\sub$max/ are very effective on CPL in the range of low frequency, mid-low frequency, mid-high frequency and high frequency respectively.

The influence of the rheological parameters on the dispersion of the flexural waves in a viscoelastic bi-layered hollow cylinder

  • Kocal, Tarik;Akbarov, Surkay D.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.577-601
    • /
    • 2019
  • The paper investigates the influence of the rheological parameters which characterize the creep time, the long-term values of the mechanical properties of viscoelastic materials and a form of the creep function around the initial state of a deformation of the materials of the hollow bi-layered cylinder on the dispersion of the flexural waves propagated in this cylinder. Constitutive relations for the cylinder's materials are given through the fractional exponential operators by Rabotnov. The dispersive attenuation case is considered and numerical results related to the dispersion curves are presented and discussed for the first and second modes under the first harmonic in the circumferential direction. According to these results, it is established that the viscosity of the materials of the constituents causes a decrease in the flexural wave propagation velocity in the bi-layered cylinder under consideration. At the same time, the character of the influence of the rheological parameters, as well as other problem parameters such as the thickness-radius ratio and the elastic modulus ratio of the layers' materials on the dispersion curves, are established.

Distinction between HAPS and LEO Satellite Communications under Dust and Sand Storms Levels and other Attenuations

  • Harb, Kamal
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.382-388
    • /
    • 2022
  • Satellite communication for high altitude platform stations (HAPS) and low earth orbit (LEO) systems suffer from dust and sand (DU&SA) storms in the desert regions such as Saudi Arabia. These attenuations have a distorting effect on signal fidelity at high frequency of operations. This results signal to noise ratio (SNR) to dramatically decreasing and leads to wireless transmission error. The main focus in this paper is to propose common relations between HAPS and LEO for the atmospheric impairments affecting the satellite communication networks operating above Ku-band crossing the propagation path. A double phase three dimensional relationship for HAPS and LEO systems is then presented. The comparison model present the analysis of atmospheric attenuation with specific focus on sand and dust based on particular size, visibility, adding gaseous effects for different frequency, and propagation angle to provide system operations with a predicted vision of satellite parameters' values. Skillful decision and control system (SD&CS) is proposed to control applied parameters that lead to improve satellite network performance and to get the ultimate receiving wireless signal under bad weather condition.

The Seismic Source Parameters for Earthquakes Occurring in the Korean Peninsula (한반도 지진의 지진원 상수)

  • Kim, Sung-Kyun;Kim, Bung-Chul
    • Journal of the Korean earth science society
    • /
    • v.29 no.2
    • /
    • pp.117-127
    • /
    • 2008
  • Source parameters for forty four earthquakes which occurred in and around the Korean Peninsula were determined and the relations between them were studied. Snoke's method (Snoke, 1987) was applied in determining the corner frequencies and seismic moments. In general, the source parameters estimated at different stations for an earthquake show different values. These disagreements have been interpreted as originating, in principle, from an inadequate consideration of the source radiation pattern and direction dependent attenuation and amplification. The comer frequencies and seismic moments were averaged to exclude the such directional effects. Other source parameters were estimated from the mean corner frequency and seismic moment. The static stress drops, determined in this study, tend to be independent of seismic moment for events greater than a specific magnitude. For earthquakes with a size less than about $1.0{\times}10^{22}$ dyne-cm (nearly same as $M_L = 4.0$), the stress drop tends to decrease with the decreasing moment. This fact suggests a breakdown of the scaling law of source parameters in earthquakes below the threshold magnitude.

Influence of Inner-hole Priming Location on Ground Vibration (발파공내 기폭위치가 지반진동에 미치는 영향)

  • Kim, Jae-Woong;Kang, Choo-Won;Ko, Chin-Surk
    • Explosives and Blasting
    • /
    • v.30 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • In this study, the influence of priming location inside a blast hole on the ground vibration has been studied. In most of the previous studies dealing with the ground vibration, the effect of priming location in a blast hole was usually considered in a limited way. Thus, it seems that the results of the studies can be applicable only to the relevant sites. Considering the fact that the mechanism of ground vibration caused by blasting is quite complex, the priming location can have a considerable effect on the ground vibration in certain situations and be an important parameter in a blasting design. To identify the characteristics of the wave propagation according to priming locations, total 72 test blasts were carried out with different spacing, burden, drilling length, and charge, and prediction equations were derived. The characteristics of ground vibration, which was changed according to the priming location, was analyzed by using the nomogram of peak particle velocity (PPV) record. Attenuation relations, which were also dependent on the priming location, were analyzed. In this case, four different amounts of charge, that is, 0.5, 1.6, 5, and 15 kg, were used for the test. This criterion of charge amount is specified in the "Blasting design and construction guidelines to road construction" by the Ministry of Land, Transport and Maritime Affairs of Korea.

An Experimental Study on Performance of a Miniaturized Exploding Foil Initiator using VISAR (VISAR를 활용한 초소형 EFI 기폭 장치의 성능 특성 연구)

  • Yu, Hyeonju;Jang, Seung-gyo;Kim, Kyu-Hyoung;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.80-87
    • /
    • 2017
  • The performance of a pyrotechnic device that consists of donor/acceptor pair separated by a bulkhead relies on shock attenuation characteristics of the gap material and shock sensitivity of the donor and acceptor explosives. In this research, a micro Kapton flyer was accelerated by an exploding foil initiator (EFI) to figure out shock sensitivity of hexanitrostilbene (HNS) to impact. The averaged shock pressure and duration imparted to the explosive by flyer impact are measured by using a velocity interferometer for any reflector (VISAR) and impedance matching technique. Consequently, this research shows the possibility to determine the critical flyer velocity for initiating the miniaturized pyrotechnic unit by determining the relations between the impact velocity, the amplitude and width of impact loading.

Chip-level NFP Calibration and Verification Using Improved Probe for NFS Standardization (NFS 표준을 위한 개선된 프로브를 이용한 칩 수준 NFP 측정값 교정 및 검증)

  • Lee, Pil-Soo;Wee, Jae-Kyung;Kim, Boo-Gyoun;Choi, Jai-Hoon;Yeo, Soon-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.6
    • /
    • pp.25-34
    • /
    • 2012
  • New calibration method for the near-field scanning (NFS) system is presented. The proposed calibration method consisted of a new near-field antenna (NFP) and newly devised patterns as circular patch patterns (CPPs) and meander patterns (MPs). The proposed patterns were used for improving spatial resolutions and simplifying a calibration procedure of the NFP compared to the conventional method defined in the IEC61967-3 and 6. Also, the effect of the length of NFPs on attenuation characteristics was investigated with length of 8mm and 30mm. For them, we designed and fabricated CPPs of diameter (D) = 20, 40, 60, and 100mm and MPs of various widths and spaces. We found the reverse relations between spatial resolutions and heights of measuring points by using simplified calibration procedure. The testing result shows that the spatial resolution of $120{\mu}m$ at height of $200{\mu}m$ was verified without complex correlation algorithms under 8GHz. For manufacturing cost all patterns and the NFP were realized with low-cost fabrication using PCB (FR-4) not by a conventional LTCC process. For verification of chip-level EMC from the results, near-field scanning system (NFSS) having step resolution of Sub-micron scale was produced and by using the proposed NFSS and proposed NFP measurement of chip shows accurately the shape of the resolution of $200{\mu}m$ patterns for securing a high level of chip-level EMC verification.

High-Frequency Bottom Loss Measured at Near-Normal Incidence Grazing Angle in Jinhae Bay (진해만에서 측정된 높은 수평입사각에서의 고주파 해저면 반사손실)

  • La, Hyoung-Sul;Park, Chi-Hyung;Cho, Sung-Ho;Choi, Jee-Woong;Na, Jung-Yul;Yoon, Kwan-Seob;Park, Kyung-ju;Park, Joung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.223-228
    • /
    • 2010
  • High-frequency bottom loss measurements for grazing angle of $82^{\circ}$ in frequency range 17-40 kHz were made in Jinhae bay in the southern part of Korea. Observations of bottom loss showed the strong variation as a function of frequency, which were compared to the predicted values using two-layered sediment reflection model. The geoacoustic parameters including sound speed, density and attenuation coefficient for the second sediment layer were predicted from the empirical relations with the mean grain size obtained from sediment core analysis. The geoacoustic parameters for the surficial sediment layer were inverted using Monte Carlo inversion algorithm. A sensitivity study for the geoacoustic parameters showed that the thickness of surficial sediment layer was most sensitive to the variation of the bottom loss.