DOI QR코드

DOI QR Code

An Experimental Study on Performance of a Miniaturized Exploding Foil Initiator using VISAR

VISAR를 활용한 초소형 EFI 기폭 장치의 성능 특성 연구

  • Yu, Hyeonju (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Jang, Seung-gyo (The 4th R&D Institute - 1st Directorate, Agency for Defense Development) ;
  • Kim, Kyu-Hyoung (Energetic Material and Pyrotechnics Department, Hanwha Research Institute of Technology) ;
  • Yoh, Jai-ick (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2016.12.24
  • Accepted : 2017.04.02
  • Published : 2017.10.01

Abstract

The performance of a pyrotechnic device that consists of donor/acceptor pair separated by a bulkhead relies on shock attenuation characteristics of the gap material and shock sensitivity of the donor and acceptor explosives. In this research, a micro Kapton flyer was accelerated by an exploding foil initiator (EFI) to figure out shock sensitivity of hexanitrostilbene (HNS) to impact. The averaged shock pressure and duration imparted to the explosive by flyer impact are measured by using a velocity interferometer for any reflector (VISAR) and impedance matching technique. Consequently, this research shows the possibility to determine the critical flyer velocity for initiating the miniaturized pyrotechnic unit by determining the relations between the impact velocity, the amplitude and width of impact loading.

격벽으로 분리된 여폭약과 수폭약의 쌍으로 이루어진 파이로테크닉 장치의 성능은 격벽 내에서의 충격파 감쇠 및 폭약의 충격 감도에 의해 결정된다. 따라서 초소형 Kapton 비행편의 고속 충돌 실험을 통한 대상 HNS의 충격 점화 및 감도 분석을 목표로 EFI 기폭 장치를 고안하였다. 폭약에 전해지는 충격파의 강도 및 지속 시간의 측정을 위해 VISAR 속도 간섭계를 활용한 속도 측정 및 임피던스 정합 기법을 적용하였다. 본 연구는 비행편의 속도 및 충돌 시 발생되는 충격파의 강도와 지속 시간을 결정함으로써 소형 파이로테크닉 장치의 성능 및 기폭을 위한 비행편의 임계 속도의 예측 가능성을 확인하였다.

Keywords

References

  1. Ebenhoch, S., Nau, S. and Haring, I., "Validated model-based simulation tool for design optimization of exploding foil initiators," The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, Vol. 12, No. 2, pp. 189-207, 2015. https://doi.org/10.1177/1548512914557834
  2. Nappert, L., "An Exploding Foil Initiator System," Defence Research Establishment Valcartier, 1996.
  3. Schwarz, A.C., "Study of factors which influence the shock-initiation sensitivity of hexanitrostilbene (HNS)," Sandia National Labs., Albuquerque, N.M., U.S.A., No. SAND-80-2372, 1981.
  4. Yu, H., Fedotov, V., Baek, W. and Yoh, J.J., "Towards controlled flyer acceleration by a laser-driven mini flyer," Applied Physics A, Vol. 115, No. 3, pp. 971-978, 2014. https://doi.org/10.1007/s00339-013-7916-8
  5. Dennis-Koller, D., Escobedo-Diaz, J.P., Cerreta, E.K., Bronkhorst, C.A., Hansen, B., Lebensohn, R., Mourad, H., Patterson, B. and Tonks, D., "Controlled shock loading conditions for microstructural correlation of dynamic damage behavior," AIP Conference Proceedings-American Institute of Physics, Chicago, I.L., U.S.A., Vol. 1426, No. 1. pp. 1325-1330, Jun. 2011.
  6. Forbes, J.W., Shock wave compression of condensed matter: a primer, Springer Science & Business Media, Heidelberg, German, 2013.
  7. Antoun, T., Spall fracture, Springer Science & Business Media, New York, N.Y., U.S.A., 2003.
  8. Yu, H., Kim, J.W. and Yoh, J.J., "A high velocity impact experiment of micro-scale ice particles using laser-driven system," Journal of Applied Physics, Vol. 116, No. 17, pp. 173508-1-173508-8, 2014. https://doi.org/10.1063/1.4901240
  9. Kiang, Y.C. and Lang, R.W., "Measuring focused Gaussian beam spot sizes: a practical method," Applied optics, Vol. 22, No. 9, pp. 1296-1297, 1983. https://doi.org/10.1364/AO.22.001296
  10. Marsh, S.P., LASL shock Hugoniot data Vol. 5, Univ of California Press, Oakland, C.A., U.S.A., 1980.
  11. May, C.M., Tarver, C.M., Elert, M., Furnish, M.D., Anderson, W.W., Proud, W.G. and Butler, W.T., "Modeling short shock pulse duration initiation of Lx-16 and Lx-10 charges," AIP Conference Proceedings, Nashville, T.N., U.S.A., Vol. 11, No. 1, pp. 275-278, Jun. 2009.
  12. Duvall, G.E., "Maxwell-like relations in condensed materials," Iranian Journal of Science and Technology, Vol. 7, pp. 57-69, 1978.
  13. Yu, H. and Yoh, J.J.. "Laser-generated shock wave attenuation aimed at microscale pyrotechnic device design," AIP Advances, Vol. 6, No. 5, pp. 055314-1-055314-13, 2016. https://doi.org/10.1063/1.4950855