• 제목/요약/키워드: Asymptotic normality

검색결과 140건 처리시간 0.023초

Asymptotic Properties of the Stopping Times in a Certain Sequential Procedure

  • Kim, Sung-Lai
    • Journal of the Korean Statistical Society
    • /
    • 제24권2호
    • /
    • pp.337-347
    • /
    • 1995
  • In the problem of some sequential estimation, the stopping times may be written in the form $N(c) = inf{n \geq n_0; n \geq c^2 S^2_n/\delta^2 (\bar{X}_n)}$ where ${s^2_n}$ and ${\bar{X}_n}$ are the sequences of sample variance and sample mean of the independently and identically distributed (i.i.d.) random variables with distribution $F_{\theta}(x), \theta \in \Theta$, respectively, and $\delta$ is either constant or any given positive real valued function. We obtain some asymptotic normality and asymptotic expectation of the N(c) in various limiting situations. Specially, uniform asymptotic normality and uniform asymptotic expectation of the N(c) are given.

  • PDF

ASYMPTOTIC NORMALITY OF WAVELET ESTIMATOR OF REGRESSION FUNCTION UNDER NA ASSUMPTIONS

  • Liang, Han-Ying;Qi, Yan-Yan
    • 대한수학회보
    • /
    • 제44권2호
    • /
    • pp.247-257
    • /
    • 2007
  • Consider the heteroscedastic regression model $Y_i=g(x_i)+{\sigma}_i\;{\epsilon}_i=(1{\leq}i{\leq}n)$, where ${\sigma}^2_i=f(u_i)$, the design points $(x_i,\;u_i)$ are known and nonrandom, and g and f are unknown functions defined on closed interval [0, 1]. Under the random errors $\epsilon_i$ form a sequence of NA random variables, we study the asymptotic normality of wavelet estimators of g when f is a known or unknown function.

ASYMPTOTIC NORMALITY OF ESTIMATOR IN NON-PARAMETRIC MODEL UNDER CENSORED SAMPLES

  • Niu, Si-Li;Li, Qlan-Ru
    • 대한수학회지
    • /
    • 제44권3호
    • /
    • pp.525-539
    • /
    • 2007
  • Consider the regression model $Y_i=g(x_i)+e_i\;for\;i=1,\;2,\;{\ldots},\;n$, where: (1) $x_i$ are fixed design points, (2) $e_i$ are independent random errors with mean zero, (3) g($\cdot$) is unknown regression function defined on [0, 1]. Under $Y_i$ are censored randomly, we discuss the asymptotic normality of the weighted kernel estimators of g when the censored distribution function is known or unknown.

ASYMPTOTIC APPROXIMATION OF KERNEL-TYPE ESTIMATORS WITH ITS APPLICATION

  • Kim, Sung-Kyun;Kim, Sung-Lai;Jang, Yu-Seon
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.147-158
    • /
    • 2004
  • Sufficient conditions are given under which a generalized class of kernel-type estimators allows asymptotic approximation on the modulus of continuity. This generalized class includes sample distribution function, kernel-type estimator of density function, and an estimator that may apply to the censored case. In addition, an application is given to asymptotic normality of recursive density estimators of density function at an unknown point.

Minimax Choice and Convex Combinations of Generalized Pickands Estimator of the Extreme Value Index

  • Yun, Seokhoon
    • Journal of the Korean Statistical Society
    • /
    • 제31권3호
    • /
    • pp.315-328
    • /
    • 2002
  • As an extension of the well-known Pickands (1975) estimate. for the extreme value index, Yun (2002) introduced a generalized Pickands estimator. This paper searches for a minimax estimator in the sense of minimizing the maximum asymptotic relative efficiency of the Pickands estimator with respect to the generalized one. To reduce the asymptotic variance of the resulting estimator, convex combinations of the minimax estimator are also considered and their asymptotic normality is established. Finally, the optimal combination is determined and proves to be superior to the generalized Pickands estimator.

Asymptotic Properties of LAD Esimators of a Nonlinear Time Series Regression Model

  • Kim, Tae-Soo;Kim, Hae-Kyung;Park, Seung-Hoe
    • Journal of the Korean Statistical Society
    • /
    • 제29권2호
    • /
    • pp.187-199
    • /
    • 2000
  • In this paper, we deal with the asymptotic properties of the least absolute deviation estimators in the nonlinear time series regression model. For the sinusodial model which frequently appears in a time series analysis, we study the strong consistency and asymptotic normality of least absolute deviation estimators. And using the derived limiting distributions we show that the least absolute deviation estimators is more efficient than the least squared estimators when the error distribution of the model has heavy tails.

  • PDF

Asymptotics Properties of LAD Estimators in Censored Nonlinear Regression Model

  • Park, Seung-Hoe;Kim, Hae-Kyung
    • Journal of the Korean Statistical Society
    • /
    • 제27권1호
    • /
    • pp.101-112
    • /
    • 1998
  • This paper is concerned with the asymptotic properties of the least absolute deviation estimators for the nonlinear regression model when dependent variables are subject to censoring time, and proposed the simple and practical sufficient conditions for the strong consistency and asymptotic normality of the least absolute deviation estimators in censored regression model. Some desirable asymptotic properties including the asymptotic relative efficiency of proposed model with respect to standard model are given.

  • PDF

Improving Efficiency of the Moment Estimator of the Extreme Value Index

  • Yun, Seokhoon
    • Journal of the Korean Statistical Society
    • /
    • 제30권3호
    • /
    • pp.419-433
    • /
    • 2001
  • In this paper we introduce a method of improving efficiency of the moment estimator of Dekkers, Einmahl and de Haan(1989) for the extreme value index $\beta$. a new estimator of $\beta$ is proposed by adding the third moment ot the original moment estimator which is composed of the first two moments of the log-transformed sample data. We establish asymptotic normality of the new estimator and examine and adaptive procedure for the new estimator. The resulting adaptive estimator proves to be asymptotically better than the moment estimator particularly for $\beta$<0.

  • PDF