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Minimax Choice and Convex Combinations of
Generalized Pickands Estimator of
the Extreme Value Index

Seokhoon Yun'

ABSTRACT

As an extension of the well-known Pickands (1975) estimator for the
extreme value index, Yun (2002) introduced a generalized Pickands estima-
tor. This paper searches for a minimax estimator in the sense of minimizing
the maximum asymptotic relative efficiency of the Pickands estimator with
respect to the generalized one. To reduce the asymptotic variance of the
resulting estimator, convex combinations of the minimax estimator are also
considered and their asymptotic normality is established. Finally, the opti-
mal combination is determined and proves to be superior to the generalized
Pickands estimator.
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mality, asymptotic relative efficiency.
AMS 2000 subject classifications. Primary 62G32; Secondary 62G30.

1. Introducton

Suppose we are given id observations X1, ..., X;, whose common distribution
function F belongs to the domain of attraction of an extreme value distribution
G for some 8 € R [F € D(Gj)], where Gg(z) := exp{—(1+Bz)~ P}, 1+Bz > 0.
This means that there exist constants a, > 0 and b, € R such that

lim F™(anz + by) = Gg(z) (1.1)

n—roc

for all z with 1 + Sz > 0. Throughout the case 8 = 0 is interpreted as the limit
when 8 — 0, so that Go(z) = exp(—e~ %),z € R

The shape parameter 3 of the extreme value distribution Gg, which is called
the extreme value index, can be estimated using a number of upper order statistics
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of the sample X;,...,X,;. If it is known that 8 > 0, the most frequently used
estimator of § is the Hill (1975) estimator, which cannot however be generally
applicable for estimating general S € R due to its inconsistency for 8 < 0. A
popular estimator of general # € R is the Pickands (1975) estimator, which, based
on the m (4 < m < n) upper order statistics, is defined by

™ ™

g o Lo Ky = Xy

mm = og2 W ™
8% Xpmjy ~ Xm

where Xf") > Xén) > > X,Sn) are the descending order statistics of X, ..., X,
and [z] denotes the integer part of z € R.

Falk (1994) and Drees (1995) considered convex combinations of several
Pickands estimators to reduce the asymptotic variance of ng,zl On the other
hand, a number of attempts to generalize the Pickands estimator have been also
made in the literature (e.g. see Pereira, 1994; Alves, 1995; Yun, 2000). The
most general form was introduced by Yun (2002), who considered the generalized
Pickands estimator of form

. (n) _ x(n)

3 — [um]
Bn,m (u,v) := iog s log L u,v € (0,1),

fom] [wvm)]

where 1 < m, [um],{vm],[uvm] < n. The Pickands estimator corresponds to
Brm(1/2,1/2).

It turns out that the optimal value of (u,v) minimizing the asymptotic vari-
ance of Bn,m(u, v) does depend on the unknown parameter 8 and is moreover not
continuous as a function of 4. In this paper we instead search for a numerical
minimax solution (ug,vo) of (u,v) that minimizes

sup

asymptotic variance of ﬂAn,m (u,v)
BER

asymptotic variance of ,BT(LI;,)Z

the maximum asymptotic relative efficiency of B,(f;,)l with respect to Bn,m (u,v).
To reduce the asymptotic variance of Sy, m(uo,vo), we then consider convex
combinations of form

Br.m (D) := PBpm (10, v0) + (1 — P)Bn,fuom) (o, v0), p € [0,1]. (1.2)

We establish asymptotic normality of Bn,m (p) and determine the optimal choice
p*(B) of p minimizing the asymptotic variance of B, (p). The estimators By(‘LPW)L
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and By, m(ug,vg) are then clearly outperformed by B, m(p*(8)). Since p*(8) de-
pends on f3, a data-driven version of p*(3) is finally plugged into S, (p*(8)), with
the resulting estimator having the same asymptotic performance as S, m(p*(58)).

2. Minimax Choice of Generalized Pickands Estimator

We work with an intermediate sequence m = m(n) (i.e. sequence of integers
m = m(n) such that m — oo and m/n — 0 as n — o0o). Yun (2002) showed
that the generalized Pickands estimator £, m(u,v) is weakly consistent for any
intermediate sequence m = m(n) and that it is also strongly consistent if the
sequence m = m(n) increases suitably rapidly.

Let the function U be defined by U(z) := F~!(1 ~ 1/z), £ > 1, where F~!
denotes the quantile function of F. Then F' € D(Gg) for some 3 € R if and only
if there exist functions a(t) > 0 and R(t,z) such that, for z > 0,

Ultz) -U@) 2f -1
at) B

(¢f. de Haan, 1984). In this case the function a(t) is regularly varying at infinity
with index B [a(t) € RVs]. For asymptotic normality of By m(u,v), one has to
consider the second order behavior of U. Among several second order conditions
on U introduced in the literature (c¢f. Smith, 1987; Dekkers and de Haan, 1989;
Pereira, 1994), the most general form was made by de Haan and Stadtmiiller
(1996), who assumed that, for z > 0,

+ R(t,z), R(t,z) =o0(1) as t — oo (2.1)

R(t,z) = A(t)H(z) + o(A(t)), A(t) = o(1) as t = oo, (2.2)
where A(t) is a function of constant sign for large values of ¢ and

8te — 1 P — 1)
B+p B
for some p < 0. In this case one must have |A(t)| € RV,
For convenience, we also work with a slightly stronger assumption than F €

D(Gpg), i.e. we assume that F is differentiable in a left neighborhood of the right
endpoint of F' and there exist constants a, > 0 and b, € R such that

1

e =

d
lim d—F"(anx +bn) = Gp(z)

n—oo dx

locally uniformly in z with 1 + Sz > 0 (¢f. Pickands, 1986). In this case we say
that F' belongs to the differentiable domain of attraction of Gg [F' € Dy (Gp)]-
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Clearly, F € Dyj;(Gg) implies F € D(Gg) with the same normalizing constants
an and b,.

Under condition (2.2), define f(t) := t/A42(t) and let f~'(t) denote any asymp-
totic inverse function of f(¢) as ¢ & co. For ease of reference, we supply the fol-
lowing result which was established by Yun (2002). By 4 we denote convergence
in distribution.

Theorem 2.1. Suppose F € Dy;s(Gp) for some B € R, so that (2.1) holds. Let
u,v € (0,1).

(a) If R(t,z) =0, then
V(B m (u,v) — B) 4 N(0, aﬁ(u, v)) as n — 0o (2.3)
for any intermediate sequence m = m(n), where

—928— —B— 2
G%(U,’U) — (14w 28 D1 ~v) —2u B8 1. max{u — v,0} <1 -—,Bu_ﬁ) .

vlog?v

(b) For R(t,z) not being identically zero, assume further that (2.2) holds. Then
(2.3) holds for any intermediate sequence m = m(n) such that m =

o(n/f~}(n)}.

It is worth noting that (2.1) holds with R(¢,z) = 0 if and only if F is a
generalized Pareto distribution function up to a scale and location parameter (cf.
Theorem 3.1 of Pereira, 1994).

Now the asymptotic variance ag(u,v) does not have the same behavior, as
a function of (u,v), for all 8 € R. Thus the optimal value of (u,v) minimiz-
ing ag(u, v) does depend on the unknown parameter 3, which we denote by
(u*(B),v*(B)). If the function B+ (u*(B),v*(B)) were continuous, then we could
consider plugging data-driven versions of u*(8) and v*(8) into By m(u*(8), v* (8)).
In general we cannot get the explicit form of (u*(8),v*(8)) due to the irreg-
ular expression of og(u,v), but it can be numerically seen that the function
B = (u*(8),v*(B)) is not continuous at B = 0§ by simply computing the values
(u*(B),v*(B)) around B8 = 0. This implies that any adaptive procedure is not
feasible in general.

Instead, we search for a numerical minimax solution of (u,v) with respect to
asymptotic relative efficiency (ARE). The ARE of ,BA,(Z},),), with respect to ﬁn,m(u, v)
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is given by

9(B,u,v)
= o5(u,v)/05(1/2,1/2)

1+ w271 (1 - v) — 201 . max{u —v,0} [1—2"\? [log2)?
2(1 +2728-1)y 1—ub log v

for u,v € (0,1). The ARE function g(5,u,v) may be interpreted as a loss func-
tion with action (u,v). Then a minimax choice of (u,v) is a value of (u,v) that
minimizes supgcg 9(f, 4, v), the maximum ARE. Unfortunately, for each value of
(u,v) the maximum ARE has no explicit form but can still be computed numer-
ically. In Figure 2.1(a) we plot the maximum ARE function supgcg 9(8, u,v). It
looks somewhat flat in the middle part of the plot, but it is actually convex and
has a minimum value 0.7419 (approx.) at (u,v) = (ug,vo) := (1/2,1/5) (approx.)
as seen in the enlarged plot of Figure 2.1(b).

FIGURE 2.1 Mazimum ARE of the Pickands estimator ﬁA,(ﬁ?L with respect to Bn,m(u, v)

In Figure 2.2 we plot the ARE function g(3,ug,vy) for the minimax choice
(u0,vp). It has a minimum value 0.3485 (approx.) at 8 = —1/2. Also note that

lim g(B,up,v0) = lim ¢(B,ug,ve) = 0.7419 (approx.).
B—o0 B——00

In other words, the asymptotic performance of the minimax estimator 8y, m (ug, vo)
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ARE

FIGURE 2.2 ARE of B{5), with respect t0 Bnm(uo,v0) (broken line), Bn.m(6o,00) (dotted line),
Br,m(1/co,co/4) (dotted and broken line) and Bn,m(p*(Bn)) (solid line)

is better than that of the Pickands estimator Bﬁf,?l by at least 25.81% and at most
65.15%. The best improvement occurs when 8 = —1/2.

Pereira (1994) and Yun (2000) suggested the use of Bn,m(Go, 6) and
,Bn,m(l/co, co/4), respectively, where 6y := 0.14 and ¢y := 1.5984. Therefore
it is natural to compare the asymptotic performance of Bn,m(uo,vo) with those
of Br.m(80,00) and B, m(1/co, co/4). Figure 2.2 also includes the ARE functions
(B,60,80) (ARE of 85), with respect to fnm(60,600)) and g(8,1/co,co/4) (ARE
of ,37(11:;)1 with respect to B m(1/co,c0/4)).

The plot exhibits that the Pereira estimator 3n’m(60, 6y) outperforms the min-
imax estimator ﬁn,m(uo, vp) only for 8 € (—4.3631,0.3585) and is worse than even
the Pickands estimator ﬂﬂ,(z{:,)l for § > 1.24. In fact, we have

lim g(8,6y,600) = 2.7268 (approx.),
B—ro0

lim g¢(B,6q,0) = 0.7635 (approx.),
B——o0
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lim ¢(8,1/co,co/4) = 0.6857 (approx.),
f—ro0

lim ¢(B,1/cp,co/4) = 0.8579 (approx.).
B——00

Therefore it is clear that, among the estimators compared so far, ,Bn,m(uo,vo)
is the only estimator that gives a fairly good asymptotic performance for all
real values of 3. These considerations may support a general preference of the
minimax estimator Bn,m(uo, vg) particularly for conservative analysts.

3. Convex Combinations of Minimax Estimator

Though the minimax estimator Bn,m(uo, vo) shows a fairly good performance,
its asymptotic efficiency may be further improved by convex combinations. In
this section we consider simple convex combinations given in (1.2).

The following lemma is needed to prove asymptotic normality of ﬁn,m(p).

Lemma 3.1. (Cooil, 1985) If F € Dy(Gg) for some B € R, then for any
intermediate sequence m = m(n), the stochastic process {Z, ,(0),8 € (0,1]}
defined by
g (6) = YKo = U/ (0m)

e a(n/m)
with a(-) in (2.1) converges to the Gaussian process {Z(0),0 € (0,1]} defined by
Z(0) := 67F-1W(8), where {W(0),0 > 0} is a standard Wiener process, in the
sense that for every k = 1,2, ... and any values 0 < 6; < --- < 6, <1,

(Znm(01), -, Znn (08)) 3 (Z(61), ..., Z(6)) as n — oo.

Theorem 3.1. Suppose F € Dy(Gp) for some € R, so that (2.1) holds. Let
p € [0,1].

(a) If R(t,z) =0, then
Vi (Bum(p) = B) 5 N(0,03(uo, v0)53(p) asn > 00 (3.1)
for any intermediate sequence m = m(n), where

4 —3.98+1 4 926+3 B 2
log® 5 (1—2") ’

0/%(“0, ’UO) =

2 —26-1 4 926+2 6—13.20-1 4 3.220+2
2 — 1 _ . )2
vp(p)i=1= =Py =g gpiygmm WPV T3 gy
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(b) For R(t,z) not being identically zero, assume further that (2.2) holds. Then

(3.1) holds for any intermediate sequence m = m(n) such that m =

o(n/f~}(n)).

Proof. Let m = m(n) be any intermediate sequence and write

(n) (n)
A e Xm —X[uom]
L o B )

[vomn)] [wovom]

We will see below that A m — vg and Ay (yom] — vg are of order Op(m~1/2), and
so by applying the expansion log(1 + z) = z + o(z) as z — 0 we have

\/E(ﬁn,m (p) — B)

B

Anm"'Ug A, [vorn] — Yo

= plog|1+ — |+ (1 —p)log |1+ ——F——
logvo{ g( ) R ;

1
= 3 {pv m(An,m - ")g) + (1 - D)V m(An,[vom] - 'Ug)} + Op(l)
vy log v

3

as n — o0o. Since (2.1) and Lemma 3.1 lead to
(n) (n)
X[vom] - X[uovom]
a(n/m)
U(n/(UOm)) — U(n/(uovom)) 1
a(n/m) + \/’r_T_l(Zn’m(Uo) Z . m(ugvg))
_ % mu) L) asn— oo,

B

it follows that, as n — oo,

(n) (n) B (n) (n)
ATL m— 'Uﬂ £ /B % Xm - X[uom] - UO (X[’Uom] - X[uO'uom])
’ 0 ve? (1 —ug?) a(n/m)
Similarly, one can show that, as n — oo,
(n) (n) B(y(n) (n)
8 p B 9 X[vom] - X[uo'uom] — Y (X[vgm] - X[uovgm])

An vom] — Yo "~
Arom] TR0 0SB (1 — ) a(n/m)
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Thus,
Vitfam(p) = 6)
& ﬁ v (n) _ x(™
(1—u3?)loguy . a(n/m) {pOX - X{0p)

+ (=2 (X =X ) = (X = X b+ ep(1)

[vorn] [wovomn) [vim] [uovd m
g

= a _'g)l (Bam + Cnm) + 0p(1) as n — oo, (3.2)
— Uy )08

where

Bnm = p(Zy, m(1) — nm(UO)) +(1- 217)”0 {Z,, m(v0) — Zn m(UOUO)}
-1 —P)Uo {Zn,m 'Uo) - Zn,m(UO’Uo)} ’
Jm
Com = 1 [P AU /M) = U/ (agm)))}
+ (1 = 2pl {U (n/(vom)) — U(n/(uovom))}

— (1 - pp® {U(n/(wdm)) — U(n/ (uovgm))} ]

From Lemma 3.1, it is readily checked that

Bam 3 N(0,V) as n — oo, (3.3)
where
V = (4-3.28414920+3) _(1_p)(8—20+14920+4) 1 (1-p)?(24-13-201 1+.3.270F),

(a) The assumption that R(t,z) = 0 implies Cr,n, = 0 by (2.1). Hence, from
(3.2) and (3.3), we have, as n — 0o,

VT (Bom(®) — B) 5 N(O, VB /(1 - ug”)? log? vo)) = N(0, 05 (uo, vo)3 (p))-

(b) Note that m = o(n/f~(n)) if and only if limp_00 vVmA(n/m) = 0 (cf.
Lemma 2.1 of Yun, 2002). From (2.1) and (2.2), we thus have

Com = (1= 20005 {H (o) = H(uz"v")} ~ pH (u5")
— (1 -p)d’ {H(wp?) ~ H(ug 5 )} | vmA(n/m) + Vmo(A(n/m))

— 0 as n — oo.

Hence, (3.1) follows from (3.2) and (3.3) as in case (a). a



324 Seokhoon Yun

The factor z/g (p) is now the ARE of Bn,m(uo, vp) with respect to f m(p). The
optimal choice of p minimizing u[% (p) is

. 1 —98-2 4 928+1
p (IB) =1- B-1 28127
6—13-2b-1 4 3.225+

in which case v5(p) becomes

. X 1 — 262 4 92B+1
V[%(P (8)) =1-(1-p*(p)) 1—3.28-1 1 92B+1°

Since l/g (p*(B)) < 1 for all B € R, the convex combination ﬁn,m(p*(ﬂ)) is clearly
superior to the minimax estimator Bn,m(uo, vg)-

In Figure 3.1 we display the ARE function I/g (p*(B)) as well as the optimal
weight p*(5). Notice that yg(p*(ﬁ)) has a minimum value 0.522 (approx.) at
B = —1/2 and that

Jim V30" (8) = lim_v5(p"(8)) = 5/6.
The weights p*(8) range between 0.7538 (approx.) and 5/6.

Since the optimal weight depends on the unknown 8, it is reasonable to utilize
the adaptive estimator p*(,6~’n), where £, is an initial estimator of £ which is weakly
consistent. In practice, one may use as an initial estimator

ﬁn = Bn,m(p* (O)) = Bn,m(35/46)-

The following result implies that the adaptive estimator G, (p*(58,)) has the
same asymptotic performance as the convex combination Bn,m (p*(8)) with under-
lying 3. For comparison with the estimators discussed in Section 2, a plot of the
ARE of ,37(11;% with respect to Bn,m(p*(ﬁn)), which is given by g(83, uo, vo)ug (»*(8)),
is included in Figure 2.2.

Theorem 3.2. Assume that the conditions of Theorem 3.1 hold for some 8 € R.
Let By, be any initial estimator of B which is weakly consistent. Then

VI B, (0 (Bn)) — B) % N(0,05(uo, vo)vE(p*(B))) as n— oo

for any intermediate sequence m = m(n) in case (a) and any intermediate se-
quence m = m(n) such that m = o(n/f~1(n)) in case (b).
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0.9

FIGURE 3.1 ARE of Bn,m(uo,vo) with respect to Br,m(p*(8)) (solid line) and optimal weight
p*(B8) (dotted line)

Proof. By 2, we denote convergence in probability. Since p*(:) is a continuous
function, p*(8n) 5 p*(B) as n — oo. It thus follows from Theorem 2.1 that

\/E(Bn,m(p* (Bn)) - Bn,m (p* (5)))
(p*(Br) — p*(B))V'm( An:m(uo,vo) ~ B)

"'(p*(Bn) - p*(IB))\/E(ﬂn,[vom] ('U'Oy 'UO) - IB)

= 0p(1) as n — oo.

il

Hence the assertion is immediate from Theorem 3.1. O0

4. Discussions

In the present paper, a minimax criterion in terms of ARE was first used to
select a fixed value (ug,v9) and then simple convex combinations Bn,m (p) were
considered to reduce the asymptotic variance of Bn,m(uo, vo). A natural extension
to utilize the remaining sample data is to consider higher-order convex combina-
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tions of form

k k
ﬂn,m(pl, "'7pk) = ZpiﬂnV[vé—lm](u()vUO)a Di € [Oa 1]7 sz =1,
i=1 i=1

of length k. Since

k-1
Bom(P1, k) = Y i(Di = Pit1) Brm (0, v4) + kpiBrm (o, vE),
i=1

a further generalization, as the referee suggested, is to consider
() = [ [ Bl ) (o),

where 7 is a (possibly signed) measure on the Borel o-field in (0,1)? such that
7((0,1)2) = 1, which will clearly have a smaller variance than Br.m(uo, vo) if the
measure 7 is chosen appropriately. It seems difficult to determine an optimal 7
minimizing the asymptotic variance of Bn,m(w), which will certainly depend on
the unknown B, and will be an interesting topic for future research.

Another issue to be worthy of note is how to choose m in practice. For sim-
plicity, the present paper dealt with only the estimators of 8 which are asymp-
totically unbiased. Increasing m to obtain a smaller variance of the estimator
ﬁn,m (p) however causes the estimator to have a bias different from zero. In fact,
it is possible to determine a theoretically optimal value of m which minimizes the
asymptotic mean squared error of Bn,m (p) (cf. Yun, 2002). The asymptotic bias
of Bn,m (p) turns out to depend on the second order parameter p in (2.2) as well as
B and p, and so does the optimal value of m as well. Thus, determining the best
estimator minimizing the asymptotic mean squared error with the optimal value
of m involves a difficult problem of estimating 8 and p simultaneously, which is
beyond the scope of the present paper. At this stage, we can say at the least
that the higher-order convex combination Bn,m(pl, ..., Pr) is more robust against
an inappropriate choice of m as k increases larger.
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