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Asymptotic Properties of LAD Esimators of a
Nonlinear Time Series Regression Model

Tae Soo Kim, Hae Kyung Kim 'and Seung Hoe Chot *

ABSTRACT

In this paper, we deal with the asymptotic properities of the least ab-
solute deviation estimators in the nonlinear time series regression model.
For the sinusodial model which frequently appears in a time series analysis,
we study the strong consistency and asymptotic normality of least absolute
deviation estimators. And using the derived limiting distributions we show
that the least absolute deviation estimators is more efficient than the least
squares estimators when the error distribution of the model has heavy tails.
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1. Introduction

Generally, the nonlinear regression model is
yt=f($t,90)+€t, t:172a"'aT

where f(z;,8p) is a real valued nonlinear function defined on RP*9, z; is a (1 x q)
observed vector, the error term ¢; are independent and identically distributed (
i.i.d.) with finite variance. The parameter vector 8y which is interior point in a
compact parameter space © is unknown and to be estimated. Jennrich (1969)
first rigorously proved the existence of the least squares estimator (LSE) and
showed the consistency of the LSE 67 under the following assumption: Fr(¢1, ¢2)
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converges uniformly to a continuous function F(¢1, ¢2) for all ¢; € © and ¢ € ©
and F(¢1,¢2) = 0 if and only if ¢; = ¢o, where

1
T

N

Fr(¢1,¢2) = (f(zt, ¢1) — (e, $0))° .

o~

=1

Under some stronger assumptions, asymptotic normality was proved in the same
paper. Wu (1981) gave some sufficient conditions under which the LSE converges
to 6p almost surely, when the growth rate requirement of Fr is replaced by a
Lipschitz type condition on the sequence f(z:,8).

The concept of periodicity in time series is of fundermental interest, since it
provides a means for formalizing the notions of dependence or correlation between
adjacent points. In this paper we think about a sum of sinusoidal components :

q
f(z:,60,) = E{Am cos(wrot) + Bro sin(wyret) },

r=1

where 6, = (A10, B1o, W10, * *, Agos Bgos Weo), for ¢ > 1,44, Byy’s are some fixed
unknown constants, wy, is unknown frequency lying between 0 to 7 (1 < r < g)
and in this case the observed value x; means t. But in this situation Fr(¢q, ¢o)
does not converge uniformly to a continuous function nor it satisfy Wu’s Lipschitz
type condition, the previous method to gain the LSE is not available. Walker
(1971) obtained the asymptotic properties of an approximate LSE. Kundu (1993)
and Kundu & Mitra (1996) gave the direct proof of consistency of the LSE and
the asymptotic normality results and observed that the approximate LSE and the
LSE are asymptotically equal. They found out P(f7) = (Py(617), Pa(f2r),- - -,
Py(647))34x1 converges in law N(0, 0>E~1), where o2 is the common variance of
errors in the above model and P, (6,7) = (VT (Arr—Aro), VT (Brr—Bro), \/TS((IJTT
— wre))(1 <7< g), and ¥ is defined in Theorem 4.2.

In this paper we study the least absolute deviation ( LAD ) estimators which
are defined in (1.2) of the following nonlinear time series model with assumptions
A and B,

q
Yt = Z{Aro COS(wrot) + Bro Sin(wrot)} + €t. (11)

r=1

The LAD estimators of the true parameter 8, = (A1,, Bio, wio, - -, Ago, Bgo, Wgo)

~ -

denoted by br = (filT,BlT,d)lT, -, Aqr, Byr, Wqr) is a parameter which mini-
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mizes the objective function

T

z Y — E{Ar cos(wyt) + By sin(w,t)}|, (1.2)

t=1 r=1

M| -

Qr(9) =

where § = (Ay, By, w1, -, Aq, Bg,wy). On the other hand, Oberhofer (1982) stud-
ied the weak consistency about the LAD estimators with the assumptions from
B1 to B6 in his paper, but the assumption B5 is equivalent to assumption of Jen-
nrich (1969). So in order to prove the strong consistency of the LAD estimator
for this model we must take the different method.

To prove the asymptotic property of é’[‘, for one harmonic component case,
the consistency, asymptotic normality are discussed in section 2 and section 3,
respectively. And section 4 consider the case of several harmonic components,
the asymptotic relative efficiency (ARE) is stated in section 5.

2. The strong consistency

In this section, for the case of ¢ = 1, we will consider the strong consistency
of the nonlinear LAD estimators 7 = b1r = (/ilT, Bir,int) = (flT, BT,(I)T) for
0, = (A1o, Bio,w10) = (Ao, Bo,wo) in a time series with stationary independent
residuals model (1.1) with the following assumptions.

Assumption A
The parameter space © = K x K x [0, m], where K is compact subspace of
R.

Assumption B

B1: ¢ are i.i.d. random variables with the common distribution function G and
continuous probability density function g(z) such that G has unique median
at zero, and g(0) > 0.

B2: E{e?} < oo, for all t.

Remark If wy = 0, the model (1.1) is a simple linear model, and if wo = , it
is a simple regrssion model with binary regressors. So we may assume from now
on that wy € (0, 7).
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Since Qr(6p) defined in (1.2) is independent of § = 6; = (A1, Bi,w), min-
imization of Q7(6) is equivalent to minimization of the following new objective

function :

Dr(8) = Qr(6) — Qr(6).

Theorem 2.1 Suppose that Assumption A and B are satisfied on the model
(1.1). Then the LAD estimators 67 is strongly consistent for 0,.

T
1
Proof: Let Dy(0) = TZX“ where h:(0) = Ag cos wot+ By sin wyt— A cos wt —
t=1
Bsinwt, and X; = [he(0) + €| — |eq|.

First of all, we consider that the case h; (8) > 0, then we obtain

0
B(X,) =2 /_ o 10 G ).

Using the integration by parts and mean value theorem, there exists —hi(0) €
[—h(6), 0] such that

E(Xt) = 2m(0)[G(0) ~ G(—h3(6))].
Likewise, for h:(6) < 0, we alse take the same results.
E(X¢) = 2h(0)[G(0) — G(~h;*(9))],

where for some —h;*(6) € [0, —h4(8)]. Hence we have E(X;) < cc.
We also get Var(X;) is bounded. Thus we can apply the Kolmogorov’s strong
law of large numbers and then we obtain the following result:

{DT(G) -«%1_{1;0 E[DT(H)]} 2% 0 uniformly for all 0 in ©. (2.1)

Let Q(0) = limp_,o E[Dr(8)]. Now, using the next facts h;(6g) = 0 and
1
G(0) = 50 We obtain

9Q(9)
80 la:oo = (Oa Oa 0)’
0) 0 3Bog(0)
7Q(6) N 7
G000 |y, | Tom |, 0 9O —3deg(0)

3B0g(0) —3Aog(0) 1(A%+ B2)g(0)

3
= lim T2-gl—(20)(A§+B§) >0, (2.2)

T—o0
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0°Q(6)
6'09

and also the leading principal minors are positive. Hence lo=g, is a

positive-definite and then 6 is a local minimum point of Q(6).
For all 6 # 6y, we obtain the following

Qo) = Tlgr;o%[h%johtw)[cv(o>—G(—h:(o»]

+ > h(0)[G(0) — G(=h;*(0))]]

ht(8)<0

>1'2Th0 in{G(—h;* (0 11Gh*0
2 Jim, 7 2 O] min{G (A" 0) = 5, 5 = GAi(O))

T
1
It sufficies to show that lim — E |ht(8)|? > 0, using the exponent form of the
Tooo T =1

harmonic components, we have that.
Hence we have

Q(0) has the unique minimizer Gy in ©. (2.3)

The above results satisfy the conditions of the lemma 2.2 of White(1980), we can
state the result as follows : 67 is a strongly consistent estimator of 6y. O

3. Asymptotic normality

In present section we consider the asymptotic normality of the proposed esti-
mator O which is one of the most important statistical properties in asymptotic
theory. The main idea is to approximate to the function |z| by a smooth function
pr(z) such that 7wll)nrc:o,oT(ac) = |z|. We take such function

_|_Llp2 3 2, 1
pr(z) = [—gﬁT-’B + Brz” + 3_ﬂ;] Hoca< iy +aliL )

and
pr(z) = pr(-—z)
where I4 denotes the indicator function of the event A and fSr is an appropriately

chosen increasing function of T such that lim — = 0 with T? = o(83) and

T—o0 PT
Br = o(T).
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We define

For large T, Q7.(6) is close to Q7(0) defined in (1.2). Since Q4(6) is twice con-
tinuously differentiable with respect to 8 whereas the first derivative of Qr(6)
is discontinuous, we use new object function Q%(6) instead of Qr(6). And
then we prove the asymptotic normality of bp by using a Taylor expansion
of VQ7(0), where VQ7.(6) is the derivate of Q%(6) with respect to 6. Let
07 = (Air, Bipwir) = (AL, By, wr) be the pseudo estimators such that min-
imize the Q7(6).

Lemma 3.1 For the model (1.1) with assumptions A and B,

(\/T(A} — Ag), VT(B% — By), \/Tg(w} - wo)) converges in

1 -1
law N ((0, 0, 0), WE ) y where
: 0 4B
=] O 3 -4 . (3.1)
(A§+B3)

Proof : Firstly, we show that the minimum of Q%(6) sufficiently close to the
minimum of Q7(6). By the definition Q}.(6) and Qr(8), we obtain

T

1
Q) - Qr(9) = g ——ﬁ Y(6:0) + ra®(60) + 3 — 260 ocara< 1)
1
( 52 3(8:0) + Bra’(t; 0) + 3Br +z(t;6)) {~ﬁ<1(t;0)50}]
T
let %EY;, where z(t;0) = hi(0) + €.
t=1

By the continuity of Q7(8) — Qr(6) and compactness of parameter space, we
can choose * such that T{Q}(6*) — Qr(0*)} = sup T{Q%(8) — Qr(9)}.
[1<]S)

1
Since for all ¢, |¥;| < f),—_I{lht(9)+ft|<,f%}’ using mean value theorem and
T T

Chebyshev’s inequality we have T{Q7(6) — Q7 (0)} = op(1). Hence we get that
SlelgT{QE’r((?) —Qr(6)} = 0,(1). (3.2)
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Likewise theorem 2.1, by the above (3.2), we easily show that 67 converges almost
surely to 6y also.

By definition of 6, we know Qr(f7) — Qr(07) <0, and
Qr(0r) — Q1 (67) < Q7(0r) — Qr(dr) + Qr(67) — Q7 (67).
Hence by (3.2), we obtain that
T{Q7(0r) — Q7(67)} = 0p(1). (3.3)

Futhermore, by the Taylor expansion we have the following
* (1 * ()% * (A*\( A * 14 * * (0 A *
Qr(0r) = Q7(67) + VQI(67)(Or — 67) + 5 (6r — 67)"V*Q1(6r) (Or — 67),

where 0r = (A7, Bir,a17) = (Ar, Br,07) = 'yéT + (1 —)07, for some 0 < v <
1. Let i

2 )x
var) =240 w0 = LA _ (o0,0)),,

Then by the definition of 8}, VQ7(07) = 0, hence we obtain the following equa-

tion ) 1. )
Qr(br) — Qr(61) = 5(0r - 07)" V2Q1(0r) (6 — 67). (3.4)

Since V2Q%(0r) is symmetric matrix, by Courant-Fisher minimax characteriza-
tion, we also have

M(T)(6r — 67)T (br - 07) < (Br - 07)T V2 Q7 (67) (br — 07),
where A1 (T') is the smallest eigen value of VZQ}(éT). By (3.4), thus we have

T(0r — 07)" (0r - 07) < {QT (6) — Qr(61)}.

For the proof of VT (6 — 6%) = op(l), it remains to show that A\ (T) > 0
as T — oo. Hence it suffices to prove that Tlim V2Qx%(6r) is positive definite
-0

matrix. And we have the following result by simple operations

sz (he(67) + ) — 29(0) | = o(1)

With the facts hy(fr) + ¢, — € a.s. , pir(z) is continuous function, and
the Assumption B1, we have {p}(h:(fr) + €:)} are independent random vari-
ables almost surely when T is a sufficiently large number. And so we know that
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T
Var (% E P (hy(O7) + et)) = o(1). By the Chebyshev’s inequality, we have
t=1

- E o (he(O1) + 1) = 29(0) + 0,(1) and the following results

a11(T; 1) = a22(T; 07) = g(0) + 0p(1), %013( T) = —309(0) + 0p(1),
%a%(T; br) = —%Aog(O) +0,(1), ,;2 053 (T fr) = %(A2 + B2)g(0) + 0,(1).

Likewise (2.2), we know V?QX(0r) is a positive-definite. Therefore we have
VT(r - 6%) = 0,(1). (3.5)
Under the same conditions, particularly by the Taylor expansion of Q% (6)

1 292Q7(0r)

about only w, Qf*p(éT) - Q7 (07) = E(G)T wr) 907 , we have

2 N
—————T(Q4(07) — Q%(6%)) = T3 (or — w2
a33(T07) (Qr(67) — QT (67)) (Wr — wy)
By (3.3), hence we conclude that

T3 (@ — wp) = 0p(1). (3.6)

Since Q7(6) is a minimum when 6 = 67, an application of the mean value
theorem gives

(Q7) 40 = (Q7) 44(Ao — AT) + (QT) 45(Bo — Br) + (QT) 45 (wo — wi),
(Q1)B, = (Q1)34(A0 — AT) + (Q7) 35(Bo — Br) + (QT) g (wo — w7),
(QT)wo = (@T)za(Ao — AT) + (QT)55(Bo — BT) + (QF)aw(wo — wr),
(3.7)
where
@20 = ZEUDD, iy
0%Q% (A
(QT)as = ;Q—g%ggﬂlm,émﬂ, etc,

and we use the generic notation (Ar, Br,&r) for a point on the line joining
(AO, B07w0) and (A’}a B;‘aw)]k“)a so that (AT, BT,(DT) = 7(A0; BOaw0)+(1_7)(A’}a B;“,w’;“)
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The point (A7, Br,@r) in (3.7) will in general not be the same, but to distinguish
them would complicate the notation, and no ambiguity will arise by not doing
so. But (3.7) is replaced by the following

(VF(@0)40: VT(@ )0 (@) )
= — (VT(45 — 40), VT (B} - Bo), VT (w5 —wn)) x Wi, (3.8)
where
(QT) a4 Q@piz T QMis
Wi = (QT)Ba Qp)ss T QD)5
THQRWea THQes T 3Q7)aw
Now

T
VT(@f)ao = 7= 3 (= cosunt) X [rree) + o)
t=1 :

we use the Markov theorem, then we have the following results,

T
VT(Q%) 4, = -\/iT_ ;(— coswot)kr(€t) + op(1), (3.9)
and similarly
T
VT(Q3)5, = % D (sinnt)ir(c) + o5 (1), (3.10)

~

1 1
——=(QT)w, = (Aot sinwgt — Byt coswot)kr(er) + 0p(1), (3.11)

where kr(e;) = I{étZﬁ} - I{ets_ﬂ_;_}, and Ir(e;) = If(e) - I{0<6t551;} + 7 (e) -

I{_#mgo}, I (er) = —B2€2 + 2B7es, 17 (&) = Bre? + 2Bre;.
T
The sum in (3.9)-(3.11) are of the form EU“ where E(U;) = o(1), and
t=1

A3+ B2

T
1
B =5 Var(Uy) = 5 +o(1) in (3.9)-(3.10), BZ = 5
1

=
And also we have

+o(1) in (3.11).
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By the Lindberg theorem, we see that vVT(Q%)4,, VT(Q%)B,, con-

1 *
\/T (QT)WD
- . 1 1 A2+Bz
verge in law respectively to N(0, 3 ), N(0, ) and N(0, =25=2).
For the limiting joint distribution we consider the random variable

Vi (61,82, 83) = 81VT(Q) 4o + 62VT(Q3) 3o + 03VT Qe

where the §; (¢ = 1,2,3) are arbitrary real numbers. Now also using the Markov
theorem,

VT(617 627 63)

T
= % E (chﬁ(— cos wot) + 52\/T(— sinwyt) + d3 %Cﬁt)) kr(et) + op(1),

where Cy(t) = Agtsinwgt — Byt coswpt. Likewise the previous case, let Vi (61, da,
T

= EU“ we have E(U;) = o(1) and
t=1

2 &% A2+Bl, B Ao
BT_ZVarUt T+t 2053 2518 — 2885 + o(1).

t=1

Hence by Lindeberg theorem applied to the above sum, we have the fact that

Vr (61,92, 03) converges in law to a normal distribution with mean zero and vari-

62 & A2+ B2 B A
ance —2— + -5 %53 061(53 — —05253 Consequently, by virtue of the

Cramér Wold device, we see that the joint dlstrlbution of VT(Q%) a0, VT(Q%) B,
and —= (QT)% converge to that N((0,0,0),%), where Tlim Wi = Wy = 29(0)%,
—00

Wi is deﬁned in (3.8). So by (3.8) this lemma was proved. [J

Theorem 3.2 For the given model (1.1) with the assumptions A and B, we
conclude that (\/T(AT — Ag), VT(Br — By), \/TB(GJT — wo)) converges in law

N((o 0,0), miyS )
Proof : Note that

(\/T(AT — Ao), VT(Br — Bo), VT (o — wo))
= (VT(hr — 43), VT(Br - B3), VT (or - i)
+ (VI(4 — Ao), V(B = Bo), VT (w} — wi))
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By the (3.5)-(3.6), we have VT (Ar — A%), VT(Br — Bf) and VT (Gr — w})
converge in probability to zero, and by (3.1), this main theorem was proved.[)

4. The case of several harmonic components

Suppose now that the model in (1.1) is generalized to ¢ > 1. The function
corresponding to (1.2) whose minimization yields estimators 9T=(A1T,BlT,®1T,
---,fiqT,BqT,d)qT) becomes (1.2), where § = (A1, Bi,w1, -, Aq, By, wq). Also,
by Theorem 2.1, for any 6, Dr(8) — Q(0) a.s., 0, is also at least local minimum
point of Q(6). And we also have for all 6 # 6 and likewise for the Walker (1971)

with the following sufficient condition

Am | win (T|wr — ws]) = oo, (4.1)

Q(8) > 0, i.e. 6, is the global unique minimizer of Q(0). Therefore we we can
state the result as a Theorem.

Theorem 4.1 If 61 is a LAD estimator of the model (1.1), then it is a strongly
consistent estimator of 0,.

To prove the asymptotic normality, first of all, we have

sz%(éT) = (M(T)TS)3qx3q7

where for each r,s = 1,2,---,q, M(T)s is a 3 x 3 matrices, and
) 0 for r #s,
A 1M (T)rs| = im 1220 (42, + B2) >0 forr=s.
o0

Hence we know that Tlim V2Qx(0r) is positive definite matrix. This fact indi-
—0

- . 3, .
cates forr =1,2,---,4¢, (\/T(AT‘T - A:T)a \/T(BTT - B:T)) \/T (wTT - w:T)) =
0p(1), and we can have the fact likewise in (3.8)

(VI(45r = Aro), VT(Bir = Bro), VT (wir = wro))
. (ﬁ@;uw, VI(QP)n. %(Qmm) .« (Wep)™,

where W) in (3,8), and r = 1,2,---,q.
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Also likewise the theorem 3.2, we obtain the following theorem

Theorem 4.2 With the same conditions of Theorem 3.2 and the condition
(4.1), P(07) = (P1(br1), Po(bor), - - -, Py(0yr)), where Pr(Brr) =(VT(Arr — Aro),
\/T(BTT—BM), \/Ts(d)TT—wm))(l < r < q) converges in law N(Osqx1, WZ*),
where & = (Zr5)3,53, for r,s =1,2,---,4,

0 if r#s,

O Nl
- O
o~

e
Ry
o

if r=s.

5. Conclusions

Since the asymptotic efficiency of LSE 67 relative to LAD estimators Or is
{29(0)}202, it does impliy that the LAD esitmator is asymptotically more efficient
than LSE in the sinusodial model for the heavy tailed error distributions likewise
double-exponential and logistic distribution, etc.
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