• 제목/요약/키워드: Asymptotic fixed point

검색결과 27건 처리시간 0.025초

CONTROLLING TRAFFIC LIGHTS AT A BOTTLENECK: THE OBJECTIVE FUNCTION AND ITS PROPERTIES

  • Grycho, E.;Moeschlin, O.
    • 대한수학회지
    • /
    • 제35권3호
    • /
    • pp.727-740
    • /
    • 1998
  • Controlling traffic lights at a bottleneck, in [5] a time of open passage is called optimal, if it minimizes the first moment of the asymptotic distribution of the queue length. The discussion of the first moment as function of the time of open passage is based on an analysis of the behavior of a fixed point when varying control parameters and delivers theoretical and computational aspects of the traffic problem.

  • PDF

SEMI-ASYMPTOTIC NON-EXPANSIVE ACTIONS OF SEMI-TOPOLOGICAL SEMIGROUPS

  • Amini, Massoud;Medghalchi, Alireza;Naderi, Fouad
    • 대한수학회보
    • /
    • 제53권1호
    • /
    • pp.39-48
    • /
    • 2016
  • In this paper we extend Takahashi's fixed point theorem on discrete semigroups to general semi-topological semigroups. Next we define the semi-asymptotic non-expansive action of semi-topological semi-groups to give a partial affirmative answer to an open problem raised by A.T-M. Lau.

STABILITY IN NONLINEAR NEUTRAL LEVIN-NOHEL INTEGRO-DIFFERENTIAL EQUATIONS

  • Khelil, Kamel Ali;Ardjouni, Abdelouaheb;Djoudi, Ahcene
    • Korean Journal of Mathematics
    • /
    • 제25권3호
    • /
    • pp.303-321
    • /
    • 2017
  • In this paper we use the Krasnoselskii-Burton's fixed point theorem to obtain asymptotic stability and stability results about the zero solution for the following nonlinear neutral Levin-Nohel integro-differential equation $$x^{\prime}(t)+{\displaystyle\smashmargin{2}{\int\nolimits_{t-{\tau}(t)}}^t}a(t,s)g(x(s))ds+c(t)x^{\prime}(t-{\tau}(t))=0$$. The results obtained here extend the work of Mesmouli, Ardjouni and Djoudi [20].

EXISTENCE AND ASYMPTOTIC STABILITY OF SOLUTIONS OF A PERTURBED FRACTIONAL FUNCTIONAL-INTEGRAL EQUATION WITH LINEAR MODIFICATION OF THE ARGUMENT

  • Darwish, Mohamed Abdalla;Henderson, Johnny;O'Regan, Donal
    • 대한수학회보
    • /
    • 제48권3호
    • /
    • pp.539-553
    • /
    • 2011
  • We study the solvability of a perturbed quadratic functional-integral equation of fractional order with linear modification of the argument. This equation is considered in the Banach space of real functions defined, bounded and continuous on an unbounded interval. Moreover, we will obtain some asymptotic characterization of solutions.

Minimum risk point estimation of two-stage procedure for mean

  • Choi, Ki-Heon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.887-894
    • /
    • 2009
  • The two-stage minimum risk point estimation of mean, the probability of success in a sequence of Bernoulli trials, is considered for the case where loss is taken to be symmetrized relative squared error of estimation, plus a fixed cost per observation. First order asymptotic expansions are obtained for large sample properties of two-stage procedure. Monte Carlo simulation is carried out to obtain the expected sample size that minimizes the risk and to examine its finite sample behavior.

  • PDF

DYNAMICS OF TRANSCENDENTAL ENTIRE FUNCTIONS WITH SIEGEL DISKS AND ITS APPLICATIONS

  • Katagata, Koh
    • 대한수학회보
    • /
    • 제48권4호
    • /
    • pp.713-724
    • /
    • 2011
  • We study the dynamics of transcendental entire functions with Siegel disks whose singular values are just two points. One of the two singular values is not only a superattracting fixed point with multiplicity more than two but also an asymptotic value. Another one is a critical value with free dynamics under iterations. We prove that if the multiplicity of the superattracting fixed point is large enough, then the restriction of the transcendental entire function near the Siegel point is a quadratic-like map. Therefore the Siegel disk and its boundary correspond to those of some quadratic polynomial at the level of quasiconformality. As its applications, the logarithmic lift of the above transcendental entire function has a wandering domain whose shape looks like a Siegel disk of a quadratic polynomial.

MONOTONE CQ ALGORITHM FOR WEAK RELATIVELY NONEXPANSIVE MAPPINGS AND MAXIMAL MONOTONE OPERATORS IN BANACH SPACES

  • Kang, Jinlong;Su, Yongfu;Zhang, Xin
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.293-309
    • /
    • 2011
  • The purpose of this article is to prove strong convergence theorems for weak relatively nonexpansive mapping which is firstly presented in this article. In order to get the strong convergence theorems for weak relatively nonexpansive mapping, the monotone CQ iteration method is presented and is used to approximate the fixed point of weak relatively nonexpansive mapping, therefore this article apply above results to prove the strong convergence theorems of zero point for maximal monotone operators in Banach spaces. Noting that, the CQ iteration method can be used for relatively nonexpansive mapping but it can not be used for weak relatively nonexpansive mapping. However, the monotone CQ method can be used for weak relatively nonexpansive mapping. The results of this paper modify and improve the results of S.Matsushita and W.Takahashi, and some others.

FIXED POINTS OF A CERTAIN CLASS OF ASYMPTOTICALLY REGULAR MAPPINGS

  • Jung, Jong-Soo;Thakur, Balwant-Singh;Sahu, Daya-Ram
    • 대한수학회보
    • /
    • 제37권4호
    • /
    • pp.729-741
    • /
    • 2000
  • In this paper, we study in Banach spaces the existence of fixed points of asymptotically regular mapping T satisfying: for each x, y in the domain and for n=1, 2,…, $$\parallelT^nx-T^ny\parallel\leq$\leq$a_n\parallelx-y\parallel+b_n (\parallelx-T^nx\parallel+\parallely-T^ny\parallely)$$ where $a_n,\; b_n,\; C_n$ are nonnegative constants satisfying certain conditions. We also establish some fixed point theorems for these mappings in a Hibert space, in L(sup)p spaces, in Hardy space H(sup)p, and in Soboleve space $H^{k,p} for 1<\rho<\infty \; and \; k\geq0$. We extend results from papers [10], [11], and others.

  • PDF

SOLVABILITY AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR SOME NONLINEAR INTEGRAL EQUATIONS RELATED TO CHANDRASEKHAR'S INTEGRAL EQUATION ON THE REAL HALF LINE

  • Mahmoud Bousselsal;Daewook Kim;Jong Kyu Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권1호
    • /
    • pp.57-79
    • /
    • 2023
  • We investigate the existence and uniform attractivity of solutions of a class of functional integral equations which contain a number of classical nonlinear integral equations as special cases. Using the technique of measures of noncompactness and a fixed point theorem of Darbo type we prove the existence of solutions of these equations in the Banach space of continuous and bounded functions on the nonnegative real half axis. Our results extend and improve some known results in the recent literature. An example illustrating the main result is presented in the last section.