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CONTROLLING TRAFFIC LIGHTS AT A BOTTLENECK:
THE OBJECTIVE FUNCTION AND ITS PROPERTIES

E. Grycko AND Q. MOESCHLIN

ABSTRACT. Controlling traffic lights at a bottleneck, in [5] a time
of open passage is called optimal, if it minimizes the first moment
of the asymptotic distribution of the queue length. The discussion
of the first moment as function of the time of open passage is based
on an analysis of the behavior of a fixed point when varying control
parameters and delivers theoretical and computational aspects of
the traffic problem.

1. Introduction

In [4] and [5] the question of the onset or ‘non-onset’ of a traffic col-
lapse at a bottleneck controlled by traffic lights (symmetric case) — with
the time of open passage being the control variable of the installation —
is analyzed.

The onset or ‘non-onset’ of a traffic collapse is related with the ergod-
icity of the queueing processes at the entrance points of the bottleneck.
A time of open passage is called optimal, if it minimizes the first moment
of the limiting distribution of the queueing process. The studying of this
objective as a function of the time of open passage not only gives insights
to the control characteristics of the installation but is also essential for
the computational determination of the optimal time of open passage.
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After the description of the model and the compilation of the main
results of [4] and [5] a discussion of the properties of the objective func-
tion is delivered. A special role thereby is played by a grid which reveals
to be the set of the relative minima of the objective function from the
right.

2. The model of a bottleneck controlled by traffic lights

To describe the technical part of a bottleneck controlled by traffic
lights (symmetric case) we use the following parameters:

(2.1) A, tp.

A in [veh/s| is the passage capacity (for both sides) of the bottleneck.
tr in [s] denotes the clearance times (both sides).

The arrival process A = (A;):er for an arbitrary direction is assumed
as Poisson process on the probability space (2, A, P) with parameter /
being the traffic intensity in [veh/s] in a traffic-theoretic interpretation.

For 0 <s<tletbe
(2.3) N((s;t]) = A — A,
the increment of the arrival process A during the time interval (s, ¢].

Moreover the initial distribution gy (for both sides) has to be intro-
duced, which means a probability distribution for the number of waiting
vehicles. If MY(Z,) denotes the set of all probability measures on Z,
with finite support, we require gy € ML(Z,).

While A, tg and I are considered as known, ¢ is fixed but unknown
to the installation administrator.

It is sensible to assume the times of open passage (signalized by
GREEN and afterwards by YELLOW) to be the same for both sides.
The time ¢t > 0 of open passage is the control variable in the hand of
the administrator of the installation.
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The system of a bottleneck controlled by traffic lights (symmetric
case) may be comprised in a 5-tuple

(2.4) (A, tr, I, qo, tp).

The duration of the closed passage (for both sides) is given by
(2.5) tc :=2tgp+tp

while

(2.6) ty = 2(tg + tp)

represents the length of a full control period.

3. The queueing process, collapse of traffic, independence of
the initial distribution

The function @ : R, — Z, is defined by

— 0 ,0<t<tep
. t) =
3 o) { [(t—tc)A] te St <ty
and the condition that & is periodic with the period ¢y on R, represents

the maximal number of vehicles, which can pass the bottleneck from the
beginning of a control period until the time ¢ of a control period.

(Notice that [a] means the greatest integer number less than or equal to
a.)

The number
(32) a(tF) = [tp . A] = b?(tU)

denotes the maximal number of vehicles, which may pass the bottleneck
during one control period respectively during one phase of free passage.

Let be Ly : (2, A) — Z, a random variable having the distribution
qo, independent of the arrival process A.

The process of queue lengths (of vehicles) is defined recursively by
(3.3) L(0) := Ly and
. . . . +
(34) L((7+ ty) = (L(J ty) + N((Gtv: (5 + Dtw]) — a(tF)) :
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For jty <t < (j+ 1)ty let be

(35) L(t) = (LGt) + N((Gtid) - att))
Define
(36) /\(tp) = 2I(tp + tR) =1I. tU y

A is the expectation of the number of vehicles arriving at the bottleneck
during a control period ty.

Denoting the distribution of the random variables L(jty) : Q@ — Z,
by g;, the sequence of distributions (g;)$%2, satisfies the recursion

(37) q]'+1 =Tq] (j :0,1,),
where the operator T : MYZ,) —» MY(Z,) is defined by
oltr) k) forl=0
3.8 T o) d k=0 (@*Trgp(k))  for
(38) @) { (g *Taep)) (L + aftp)) forl <1

(MY(Z,) denotes the set of probability measures on Z,; 7y denoting
the Poisson distribution with parameter A’ > 0.)

For the justification of (3.7) the reader is referred to [Grycko, Moeschlin
1998a], sec. 1.

A traffic collapse does or does not occur if

(3.9) sup {/L(t)dP{tellh} - 0,
or if
(3.10) sup {/L(t)dP|t eR+} < o,

where [ L(t)dP can be computed for any fixed time ¢ € R, according
to (3.7), (3.8).

The following theorem delivers a criterion for the onset or non-onset
of a traffic collapse.
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THEOREM 3.11. ([4]) Let (L(t)) sr, D€ the process of queue lengths
according to (3.3) — (3.5). Moreover let a(tr) and A(tr) be the numbers
introduced in (3.2) and (3.6) and let 8 € [1;00) be arbitrary.

3.11.1.  Ifoftg) > A(tr), then:

sup{/L(t)ﬂdP|t€R+} < 00;
3.11.2. if on the contrary a(tr) < A(tp), then

lim [ L(t)’dP = .

t—oo

Proof. The proof is given in [4]; it uses essentially the condition g, €
ML(Z) (set of probability measures on Z, with finite support). d

Theorem 3.13 states the existence of the distributional limit of the
queueing process, which coincides with the unique fixed point of the
operator T, thus entailing the independence of the distributional limit
from the initial distribution.

Moreover the limit of the expectations of the queueing process coin-
cides with the expectation of the limiting distribution.

Preparing Theorem 3.13 we endow M?'(Z, ) with the variational dis-
tance:

(3.12) dy(pyq) = 2- sup |p(B)—q(B)| =
BeP(Z)
= In(l) — q()]
1=0

where P(Z,) denotes the power set of Z,. Thus, (M'(Z,),d,) is a
metric space.

THEOREM 3.13. Let (L(t))tem be the process of queue lengths as
introduced in (3.3) — (3.5). Let tr > 0 be such that

a(tr) > A(tr)
holds.
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3.13.1. There exists one and only one fixed point ¢ € MYZ,) of the
operator T : (MY(Z,),d,) — (MY(Z,),d,), and,

lim dv(‘]ja‘]) = 0.
j—00

3.13.2. For the sequence of expectations of L(jty) we have:
o0 o0
lim [ LGt)dP = fim Y- 140 = > la0).
I M 1=0

Theorem 3.13 gives rise to speak of ¢ = ¢(tr) as of the ergodic distri-
bution of the process (L(t)) teR, - In a similar way we are speaking of the
respective queue lengths 3,2 1 ¢(l) as the ergodic queue length, while
tp chosen in the above way, ie., with a(tr) > A(tr) is simply called
ergodic.

Proof. A proof is given in [5]. The proof is given by a fixed point
theorem, cp. [6] and also [3]. It is based on the relative compactness of
{T™qy|n € N}, which follows by Theorem 3.11 applying a theorem of
Prohorov, cp. [1], p. 95.

The second part follows by Skorohod’s theorem, cp. too [2], p. 333. O

REMARK 3.14. In the sequel we base on the limit of the expected
queue length (ergodic queue length) at the end of the closed phase

(3.15) lim lim [ L(t)dP
J—oo ttjty +ic
when defining an objective function.

If for a tp with a(tp) > A(tr) the (ergodic) distribution g := q(tr) is
the unique fixed point of the respective operator 7' =: T'(tr), cp. 3.13.1,
the expression (3.15) has the representation

(3.16) ilq(l) + I(2tg + tr),

=0

which follows from 3.13.2.
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4. Optimality concept

A comprehensible optimality concept for the control of traffic lights at
a bottleneck is to choose tr in such a way that the limit of the expected
queue length taken at the end of the closed phase, cf. (3.15), exists in R
(ergodicity of the queueing process) and is kept minimal.

Such a definition makes sense in so far as the optimality concept does
not depend on the initial distribution go, cf. Theorem 3.13. Apart from
an intuitive accordance with this optimality requirement, one has to
see that the efficiency of all time ¢y of open passage, which lead to an
ergodic queueing process is the same, meaning that for any such ¢z the
throughput during one control period is proportional to the length of
the control period with the proportionality factor I, cf. (3.6).

Another important requirement is the minimization of the waiting
time, e.g. the time which is needed till an average queue (at the end of
the closed phase) has disappeared. Thereby it is of less importance if
a vehicle may pass at the first or the second position during the same
control period. More important is the expected number of periods a
new arriving vehicle has to wait till it has the possibility to pass the
bottleneck. This number is given by

(Bt o))

If one takes

[E(L(th +tc))] 4 LGt + )
Tty v I

for the expected waiting time, one indeed is lead to the minimization
of the expected queue lengths (ergodic length) at the end of the closed
phase, cp. (3.15), (3.16), which is taken as the objective.

5. Ergodic times of free passage

Remembered, tp is called ergodic if a(tr) > A(tr).
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REMARK 5.1.
5.1.1. In the sequel we assume
(5.2) A> 21,

since for A < 2I one has I > % and
a(tp) < )\(tp) for tgp > 0,

with the consequence, cp. 3.11.2, that there exists no time of open pas-
sage not leading to a traffic collapse.

5.1.2. On the other hand if there exists an ergodic ¢t (with a(tr) >
A(tr)), it follows that
2Itg
R rys
i.e., 2tpI(A — 2I)! is a lower bound of the set of ergodic times ¢p.

The following definitions turn out to be useful:

The set

(5.3) E = {tr|altr) > Mir)}
is called the set of ergodic times; its infimum
(5.4) terit *=Inf B/

is called the critical time (of open passage).

Moreover we define

(5.5) F = {tr|tr 2 tui}
(5.6) G = GaneNL
(5.7) D = GNF.

The lemma 5.8 and 5.12 together with the example 5.14 deliver an
aspect of the set F of ergodic times of open passage, not only important
with regard to computations but also for the theoretical understanding
of the control problem.

LEMMA 5.8.
tcrit € E N G
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Lemma 5.8 especially states that t.; equals min E and not only inf F;
moreover it is an element of the grid G.

Proof. The elements of an antitone sequence (¢;)2, in E with

(59) tcrit := lim tl
l—00
have an unique representation
k
(5.10) t,:%&— (1=1,2,...)

with k; € Z, and £ € [0; 1); the sequence (k;)2, being antitone.
Define

k:=min{k|l=1,2,...}.
As (k;), is antitone there exists a [ € Z, with

k'[zk fOI‘lZZ.

Because of (5.10) the sequence (§;):°; is antitone too; define

I—00
Because of (5.9) we have
fe = T FE
crit — A
with € = 0, since the contrary € # 0 entails the contradiction
E+§
tpi=——2 Leri
F A < Zerit
and tr € E; ie.,
k
5.11 forit = —-
(511) =5

Because of t; € E we get
tait) = k = kp > At) 2 Alfert),

since the function A(.) is isotone; i.e., tyi € E. Moreover, by (5.11) one
recognizes also that t.; € G. 0

LEMMA 5.12. Every tp € G with tp > tuy is ergodic, ie., a(tp) >
A(tr) holds.
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Proof. For tp € G the condition
a(tr) > A(tr)

is equivalent to

20ty

1 _—
(5 3) tF>A_2I,

which follows recalling the assumption A > 2] > 0. By Lemma 5.7 the
inequality (5.13) is especially fulfilled for ¢tz = t;;, therefore also for all
tr € G with tp 2 tuit- O

Notice, that times of free passage in F\D need not necessarily be
ergodic, which is demonstrated by Example 5.14.
EXAMPLE 5.14. tu is given by the smallest number ¢z € G fulfilling

21ty

tF>—————A_2]_.

Therefore t. can be calculated according to the formula

_([2tg-1-A 1
(5.15) o= ([Z=ar]+1) 5
For
1250 400
= 2600 [veh/s], I:= 3600 [veh/s], tg:=50s]

we have t.;, = 89.28 [s]. Taking tp as

0.9 [veh]

tp = tei + A

it follows that ¢F is not ergodic, because of
a(tp) = [tr - A] = 31 [veh] < 31.5271 [veh] = A(tr),

although tg > t..
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00 {f { —
queue
length
T8 250 /
[veh]
T T T tr in {s]
teriv—=289.28 92.19 95.04

e points of G

DIAGRAM 1. Queue Length as Function of ¢t
in the Neighborhood of tit

6. Relative minima of the objective function

To treat the numerical problem to determine the optimal time of free
passage it is important to know the set of relative minima of the objective
function.

Showing that the restrictions of the objective function to the intervals

1
[n—i—‘(n-%l)z) (teri - A S m € Zy)

are increasing, proves that the grid D is a subset of the set of the relative
minima of the objective function.

By reasons of effectiveness our problem of determining the optimal
time of free passage is solved when minimizing the objective function
over D.

To this end we consider the set

C:={(/,X) € Z, x (0;00) |’ > X},
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and define the function
oC
A:C—Ry, A N) =) lgwa(l)
=0

(cf. 3.13.2).

THEOREM 6.1.
(i) Let be o/ € Z,. and X, X\, € (0;00) with o/ > A > A,. Then

o (15:)) 2 i (15:0))

holds forl € Z,.
(ii) The function A is antitone in the first and isotone in the second

argument.
Notice that function A is even strictly antitone in o and strictly

isotone in A'. The proof requires more preparations and is dealt with in
a separate paper.

Applying now Theorem 6.1 to the restrictions of the objective function
(3.16) to the intervals
)
it becomes clear that these restrictions are isotone as functions of time
of free passage since a(.) is kept constant and A(.) is increasing within
any such interval, which proves our statement about D being a subset
of the relative minima of the objective function.

1
[nz,(n+1) (tcrit'ASnEZ-i-)’

It remains to prove Theorem 6.1.
proof of Theorem 6.1.  Define

(i) A=A = .

Let (¢§2))§‘;0 be an independent sequence of random variables on a
probability space (2, .A, P) distributed according to the Poisson distri-
bution my, with parameter ;.

Moreover, let (Z;)%2, be an independent sequence of random variables
on (2, A, P) distributed according to 7y such that (Z;)%, and (1/}J(.Q) )20
are independent.
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(1) :
Let then (v, )32, with

(6.2) vV =yPrz;  (=0,1,...)

be an independent sequence of random variables distributed according
to Ty .
1

Define then the random variables
W=r. a-z,
by L9(w) :=0 (w € Q,4i=1,2) and
(6.3) LY =L +9 — o) (7=0,1,...;9=1,2).

As shown in (5], Sec. 1 and Remark 4.3, the sequence (qgi));?‘;o of
distributions of (L(Z)) ° o fulfills the condition

=T (7=0,1,...;6=1,2),

where §y denotes the Dirac measure at 0.

By (6.3) and (6.2) it follows inductively that
(6.4) LP>1?  (5=0,1,...),
which implies the inequality
, — lim ¢ (1 O oo = a0 (11
Qo ¥, ([l oo)) hm ([l,oo)) 2]11'% q; ([l,oo)) Qo ,,\2([l, oo))
As

Z ! Qa’,)\;(l)
=1

is finite (cf. Theorem 3.13.2), it follows from (i) and from the represen-
tation of A(o/, X') as

Al XN) = an/ ,\/(l o) ) (e, X) € 0)

that A is isotone in the second argument. The fact that A is antitone in
the first argument follows analogously. O
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