• Title/Summary/Keyword: Asymmetric multi-processing

Search Result 23, Processing Time 0.019 seconds

Development of Vehicle LDW Application Service using AUTOSAR Platform on Multi-Core MCU (멀티코어 상의 AUTOSAR 플랫폼을 활용한 차량용 LDW 응용 서비스 개발)

  • Park, Mi-Ryong;Kim, Dongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.113-120
    • /
    • 2014
  • In this paper, we examine Asymmetric Multi-Processing Environment to provide LDW service. Asymmetric Multi-Processing Environment consists of high-speed MCU to support rapid image processing and low-speed MCU for controlling with other ECU at the control domain. Also we designed rapid image process application and LDW application Software Component(SW-C) according to the development process rule of AUTOSAR. To communicate between two MCUs, timer based polling based IPC was designed. Also to communicate with other ECUs(Electronic Control Units), we designed CAN messages to provide alarm information and receiving CAN message to catch the Turn signal. We confirm the possibility of the various ADAS development using an Asymmetric Multi-Processing Environment and AUTOSAR platform. We also expect providing ISO 26262 functional safety.

The Study of Distributed Processing for Graphics Rendering Engine Based on ARINC 653 Multi-Core System (ARINC 653 멀티코어 기반 그래픽스 렌더링 엔진 분산처리방안 연구)

  • Jung, Mukyoung
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • Recently, avionics has been migrating from a federated architecture to an integrated modular architecture based on a multi-core to reduce the number of systems, weight, power consumption, and platform redundancy. The volume of data which must bo provided to the pilot through the display device has increased, because an integrated single device performs multiple functions. For this reason, the volume of data processed by the graphic processor within a fixed operation period has increased. In this paper, we provide a multi-core-based rendering engine in to perform more graphics processing within a fixed operation period. We assume the proposed method uses a multi-core-based partitioning operating system using the AMP (Asymmetric Multi-Processing) architecture.

System-on-chip single event effect hardening design and validation using proton irradiation

  • Weitao Yang;Yang Li;Gang Guo;Chaohui He;Longsheng Wu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1015-1020
    • /
    • 2023
  • A multi-layer design is applied to mitigate single event effect (SEE) in a 28 nm System-on-Chip (SoC). It depends on asymmetric multiprocessing (AMP), redundancy and system watchdog. Irradiation tests utilized 70 and 90 MeV proton beams to examine its performance through comparative analysis. Via examining SEEs in on-chip memory (OCM), compared with the trial without applying the multi-layer design, the test results demonstrate that the adopted multi-layer design can effectively mitigate SEEs in the SoC.

Design Technique and Application for Distributed Recovery Block Using the Partitioning Operating System Based on Multi-Core System (멀티코어 기반 파티셔닝 운영체제를 이용한 분산 복구 블록 설계 기법 및 응용)

  • Park, Hansol
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.357-365
    • /
    • 2015
  • Recently, embedded systems such as aircraft and automobilie, are developed as modular architecture instead of federated architecture because of SWaP(Size, Weight and Power) issues. In addition, partition operating system that support multiple logical node based on partition concept were recently appeared. Distributed recovery block is fault tolerance design scheme that applicable to mission critical real-time system to support real-time take over via real-time synchronization between participated nodes. Because of real-time synchronization, single-core based computer is not suitable for partition based distributed recovery block design scheme. Multi-core and AMP(Asymmetric Multi-Processing) based partition architecture is required to apply distributed recovery block design scheme. In this paper, we proposed design scheme of distributed recovery block on the multi-core based supervised-AMP architecture partition operating system. This paper implements flight control simulator for avionics to check feasibility of our design scheme.

Asymmetric distributed multi server architecture for efficient method of client connection process at online game servers (온라인게임 서버에서의 효율적인 클라이언트 접속 처리를 위한 비대칭 분산형 다중 서버 구조)

  • Hwang Doh-Yeun;Lee Nam-Jae;Kwak Hoon-Sung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.459-464
    • /
    • 2005
  • The online game system could be largely divided into two parts: servers and clients. Clients accesses to a game server and analyzes the packets transmitted from a server. A game server manages users information and database. U a game server allows a new client to access the server to execute a game, it should accept the access request of the new client maintaining the online connection of the existing users. In this paper, we compare Process method and Thread method within the multiple jobs process methods of a server. Then we propose an asymmetric distributed multi server architecture that is adequate to asymmetric distributed architecture that is widely applied to most game servers. The proposed asymmetric distributed multi server architecture includes login server, game server, communication server and database server to perform its own feature independently. Comparing its other architectures, it shows better performance economically and technically. Especially it improves the stability and expandability of a server.

Robust seismic retrofit design framework for asymmetric soft-first story structures considering uncertainties

  • Assefa Jonathan Dereje;Jinkoo Kim
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.249-260
    • /
    • 2023
  • The uncertainties involved in structural performances are of importance when the optimum number and property of seismic retrofit devices are determined. This paper proposes a seismic retrofit design framework for asymmetric soft-first-story buildings, considering uncertainties in the soil condition and seismic retrofit device. The effect of the uncertain parameters on the structural performance is used to find a robust and optimal seismic retrofit solution. The framework finds a robust and optimal seismic retrofit solution by finding the optimal locations and mechanical properties of the seismic retrofit device for different realizations of the uncertain parameters. The structural performance for each realization is computed to evaluate the effect of the uncertainty parameters on the seismic performance. The framework utilizes parallel processing to decrease the computationally intensive nonlinear dynamic analysis time. The framework returns a robust design solution that satisfies the given limit state for every realization of the uncertain parameters. The proposed framework is applied to the seismic retrofit design of a five-story asymmetric soft-first-story case study structure retrofitted with a viscoelastic damper. Robust optimal parameters for retrofitting a structure to satisfy the limit state for the different realizations of the uncertain parameter are found using the proposed framework. According to the performance evaluation results of the retrofitted structure, the developed framework is proved effective in the seismic retrofit of the asymmetric structure with inherent uncertainties.

Constraint Algorithm in Double-Base Number System for High Speed A/D Converters

  • Nguyen, Minh Son;Kim, Man-Ho;Kim, Jong-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.430-435
    • /
    • 2008
  • In the paper, an algorithm called a Constraint algorithm is proposed to solve the fan-in problem occurred in ADC encoding circuits. The Flash ADC architecture uses a double-base number system (DBNS). The DBNS has known to represent the multi-dimensional logarithmic number system (MDLNS) used for implementing the multiplier accumulator architecture of FIR filter in digital signal processing (DSP) applications. The authors use the DBNS with the base 2 and 3 to represent binary output of ADC. A symmetric map is analyzed first, and then asymmetric map is followed to provide addition read DBNS to DSP circuitry. The simulation results are shown for the Double-Base Integer Encoder (DBIE) of the 6-bit ADC to demonstrate an effectiveness of the Constraint algorithm, using $0.18{\mu}\;m$ CMOS technology. The DBIE’s processing speed of the ADC is fast compared to the FAT tree encoder circuit by 0.95 GHz.

Restoring Turbulent Images Based on an Adaptive Feature-fusion Multi-input-Multi-output Dense U-shaped Network

  • Haiqiang Qian;Leihong Zhang;Dawei Zhang;Kaimin Wang
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.215-224
    • /
    • 2024
  • In medium- and long-range optical imaging systems, atmospheric turbulence causes blurring and distortion of images, resulting in loss of image information. An image-restoration method based on an adaptive feature-fusion multi-input-multi-output (MIMO) dense U-shaped network (Unet) is proposed, to restore a single image degraded by atmospheric turbulence. The network's model is based on the MIMO-Unet framework and incorporates patch-embedding shallow-convolution modules. These modules help in extracting shallow features of images and facilitate the processing of the multi-input dense encoding modules that follow. The combination of these modules improves the model's ability to analyze and extract features effectively. An asymmetric feature-fusion module is utilized to combine encoded features at varying scales, facilitating the feature reconstruction of the subsequent multi-output decoding modules for restoration of turbulence-degraded images. Based on experimental results, the adaptive feature-fusion MIMO dense U-shaped network outperforms traditional restoration methods, CMFNet network models, and standard MIMO-Unet network models, in terms of image-quality restoration. It effectively minimizes geometric deformation and blurring of images.

Study on the Shear and Forming Behavior of Chain Stitched Multi-axial Warp Knitted Fabric Preform (Chain stitch 다축경편물의 전단 및 성형 거동에 관한 연구)

  • Lee, Ji-Seok;Hong, Seok-Jin;Yu, Woong-Ryeol;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.107-110
    • /
    • 2005
  • In this study we investigated the shear and forming behavior of chain stitched multi-axial warp knitted fabric preform, so called non-crimp fabric (NCF). The picture frame test was performed to characterize the shear behavior of NCF and also provide material properties for the numerical simulation of its deformation behavior. The forming behavior of NCF with chain stitch were investigated using hemispherical forming tools. The experimental results show that processing conditions such as blank holder force (BHF) and preform shape are crucial to determining the forming behavior of NCF. For instance, an asymmetric formed shape, which is due to the stitches introduced to NCF, turns into a symmetric one as BHF increases. Furthermore the in-plane and out-of buckling (wrinkle), the severance of which were quantified using image processing method, decreases significantly as BHF increases.

  • PDF

Development of M10 Hex Head Bolt Multi-stage Die Design and Forging Analysis Automation Program (M10 육각 머리 볼트 다단 금형 설계 및 단조 성형해석 자동화 프로그램 개발)

  • M. Oh;S. Yi;J.M. Choi;S. Hong
    • Transactions of Materials Processing
    • /
    • v.33 no.5
    • /
    • pp.341-347
    • /
    • 2024
  • Many studies have focused on the optimal design of multi-stage forging molds. For optimal design progress, geometry parameters must be automatically modified, and the updated analysis file delivered. However, existing automation processes set and change parameters at the analysis input file stage, limiting them to simpler tasks like 2D shapes and basic process conditions (e.g., friction, elasticity), making it challenging to handle 3D asymmetric shapes. To address these limitations, an automated program was developed that modifies geometry directly in the CAD model, enabling the automation of complex 3D and asymmetrical shapes. In this process, a 3D mold is generated immediately after the drawing is input, automating the design of both the product and the mold without manual intervention. The program's effectiveness was demonstrated in the design and forging analysis of a multi-stage mold for M10 hex head bolts. This fully automated program reduced preprocessing time by approximately 6.7 times and successfully performed sensitivity analysis without manual input.