DOI QR코드

DOI QR Code

System-on-chip single event effect hardening design and validation using proton irradiation

  • Weitao Yang (School of Microelectronics, Xidian University) ;
  • Yang Li (School of Nuclear Science & Technology, Xi'an Jiaotong University) ;
  • Gang Guo (National Innovation Center of Radiation Application, China Institute of Atomic Energy) ;
  • Chaohui He (School of Nuclear Science & Technology, Xi'an Jiaotong University) ;
  • Longsheng Wu (School of Microelectronics, Xidian University)
  • Received : 2022.07.27
  • Accepted : 2022.10.24
  • Published : 2023.03.25

Abstract

A multi-layer design is applied to mitigate single event effect (SEE) in a 28 nm System-on-Chip (SoC). It depends on asymmetric multiprocessing (AMP), redundancy and system watchdog. Irradiation tests utilized 70 and 90 MeV proton beams to examine its performance through comparative analysis. Via examining SEEs in on-chip memory (OCM), compared with the trial without applying the multi-layer design, the test results demonstrate that the adopted multi-layer design can effectively mitigate SEEs in the SoC.

Keywords

Acknowledgement

Project supported by National Natural Science Foundation of China (Grant Nos. 11575138, 11835006, 11690040, and 11690043). We thank the engineers of the accelerator center at the CIAE.

References

  1. F. Wang, V.D. Agrawal, Single event upset: an embedded tutorial, in: 21st International Conference on VLSI Design, 2008.
  2. C. Peng, W. Chen, Y. Luo, F. Zhang, X. Tang, Z. Wang, L. Ding, X. Guo, Low-energy proton-induced single event effect in NAND flash memories, Nucl. Instrum. Methods Phys. Res. A. 969 (2020), 164064.
  3. M. Violante, C. Meinhardt, R. Reis, M.S. Reorda, A low-cost solution for deploying processor cores in harsh environments, IEEE Trans. Ind. Electron. 58 (2011) 2617-2626. https://doi.org/10.1109/TIE.2011.2134054
  4. T.S. Nidhin, A. Bhattacharyya, R.P. Behera, T. Jayanthi, K. Velusamy, Understanding radiation effects in SRAM-based field programmable gate arrays for implementing instrumentation and control systems of nuclear power plants, Nucl. Eng. Technol. 49 (2017) 1589-1599. https://doi.org/10.1016/j.net.2017.09.002
  5. H. Zheng, Y. Zhao, S. Yue, L. Fan, S. Du, M. Chen, C. Yu, The single-event effect evaluation technology for nano integrated circuits, J. Semiconductors 36 (2015), 115002.
  6. W. Yang, Y. Li, C. He, Fault injection and failure analysis on Xilinx 16 nm FinFET ultrascale MPSoC, Nucl. Eng. Technol. 54 (2022) 2031-2036. https://doi.org/10.1016/j.net.2021.12.022
  7. E. Simoen, M. Gaillardin, P. Paillet, R.A. Reed, R.D. Schrimpf, M.L. Alles, F. El-Mamouni, D.M. Fleetwood, A. Griffoni, Radiation effects in advanced multiple gate and silicon-on-insulator transistors, IEEE Trans. Nucl. Sci. 60 (2013) 1970-1991. https://doi.org/10.1109/TNS.2013.2255313
  8. D.Y.W. Lin, C.H.P. Wen, DAD-FF: hardening designs by delay-adjustable D-flip-flop for soft-error-rate reduction, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28 (2020) 1030-1042. https://doi.org/10.1109/TVLSI.2019.2962080
  9. L.A. Tambara, P. Rech, E. Chielle, J. Tonfat, F.L. Kastensmidt, Analyzing the impact of radiation-induced failures in programmable SoCs, IEEE Trans. Nucl. Sci. 63 (2016) 2217-2224. https://doi.org/10.1109/TNS.2016.2522508
  10. L.A. Tambara, J. Tonfat, A. Santos, F.L. Kastensmidt, N.H. Medina, N. Added, V.A.P. Aguiar, F. Aguirre, M.A.G. Silveira, Analyzing reliability and performance trade-offs of HLS-based designs in SRAM-based FPGAs under soft errors, IEEE Trans. Nucl. Sci. 64 (2017) 874-881. https://doi.org/10.1109/TNS.2017.2648978
  11. M. Amrbar, F. Irom, S.M. Guertin, G.R. Allen, Heavy ion single event effects measurements of Xilinx Zynq-7000 FPGA, in: Proc. IEEE Radiat. Effects Data Workshop, REDW, Boston, MA, USA, 2015.
  12. A. Stoddard, A. Gruwell, P. Zabriskie, M. Wirthlin, High-speed PCAP configuration scrubbing on zynq-7000 all programmable SoCs, in: 2016 26th International Conference on Field Programmable Logic and Applications, FPL, Lausanne, Switzerland, 2016.
  13. F. Benevenuti, F. Libano, V. Pouget, F.L. Kastensmidt, P. Rech, Comparative analysis of inference errors in a neural network implemented in SRAM-based FPGA induced by neutron irradiation and fault injection methods, in: 31st Symposium on Integrated Circuits and Systems Design, SBCCI, Bento Goncalves, Brazil, 2018.
  14. O.O. Kibar, P. Mohan, P. Rech, K. Mai, Evaluating the impact of repetition, redundancy, scrubbing, and partitioning on 28-nm FPGA reliability through neutron testing, IEEE Trans. Nucl. Sci. 66 (2019) 248-254. https://doi.org/10.1109/TNS.2018.2885066
  15. X. Du, S. Liu, D. Luo, Y. Zhang, X. Du, C. He, X. Ren, W. Yang, Y. Yuan, Single event effects sensitivity of low energy proton in Xilinx Zynq-7010 system-on-chip, Microelectron. Reliab. 71 (2017) 65-70. https://doi.org/10.1016/j.microrel.2017.02.014
  16. X. Du, C. He, S. Liu, D. Luo, X. Du, W. Yang, Y. Li, Y. Fan, Analysis of sensitive blocks of soft errors in the Xilinx Zynq-7000 System-on-Chip, Nucl. Instrum. Methods Phys. Res. A. 940 (2019) 125-128. https://doi.org/10.1016/j.nima.2019.06.015
  17. X. Du, C. He, S. Liu, Y. Zhang, Y. Li, C. Xiong, P. Tan, Soft error evaluation and vulnerability analysis in Xilinx Zynq-7010 system-on-chip, Nucl. Instrum. Methods Phys. Res. A. 831 (2016) 344-348. https://doi.org/10.1016/j.nima.2016.04.046
  18. W. Yang, Q. Yin, Y. Li, G. Guo, Y. Li, C. He, Y. Zhang, F. Zhang, J. Han, Single-event effects induced by medium-energy protons in 28 nm system-on-chip, Nucl. Sci. Tech. 30 (2019) 151.
  19. W. Yang, Y. Li, Y. Li, Z. Hua, F. Xie, C. He, S. Wang, B. Zhou, Huan He, W. Khana, T. Liang, Atmospheric neutron single event effect test on Xilinx 28 nm system on chip at CSNS-BL09, Microelectron. Reliab. 99 (2019) 119-124. https://doi.org/10.1016/j.microrel.2019.05.004
  20. W. Yang, Y. Li, W. Zhang, Y. Guo, H. Zhao, J. Wei, Y. Li, C. He, K. Chen, G. Guo, B. Du, S. Luca, Electron inducing soft errors in 28 nm system-on-Chip, Radiat. Eff. Defects Solids 175 (2020) 745-754. https://doi.org/10.1080/10420150.2020.1759067
  21. W. Yang, X. Du, C. He, S. Shi, L. Cai, N. Hui, G. Guo, C. Huang, Microbeam heavy-ion single-event effect on Xilinx 28-nm system on chip, IEEE Trans. Nucl. Sci. 65 (2018) 545-549. https://doi.org/10.1109/TNS.2017.2776244
  22. W. Yang, X. Du, J. Guo, J. Wei, G. Du, C. He, W. Liu, S. Shen, C. Huang, Y. Li, Y. Fan, Preliminary single event effect distribution investigation on 28 nm SoC using heavy ion microbeam, Nucl. Instrum. Methods Phys. Res. B. 450 (2019) 323-326. https://doi.org/10.1016/j.nimb.2018.09.038
  23. ARM, Application Note Cortex-M33 Dual Core Lockstep, 2017.
  24. Xilinx, XAPP1079 (v1.0.1), Simple AMP: Bare-Metal System Running on Both Cortex-A9 Processors, 2014.
  25. A. Oliveira, G.S. Rodrigues, F.L. Kastensmidt, N. Added, E.L.A. Macchione, V.A.P. Aguiar, N.H. Medina, M.A.G. Silveira, Lockstep dual-core ARM A9: implementation and resilience analysis under heavy ion-induced soft errors, IEEE Trans. Nucl. Sci. 65 (2018) 1783-1790. https://doi.org/10.1109/TNS.2018.2852606
  26. Single Event Effects Mitigation Techniques Report, February 2016. DOT/FAA/TC-15/62.
  27. Xilinx, Inc., Zynq-7000 All Programmable SoC Technical Reference Manual, 2015. UG585(v1.10).
  28. DS190 (v1.11.1), Zynq-7000 SoC Data Sheet: Overview, July 2, 2018.
  29. F. Zhang, G. Guo, J. Liu, Q. Chen, Study on experimental ability of 100 MeV proton single event effect test facility in China institute of atomic energy, At. Energy Sci. Technol. 52 (2018) 2101-2105.
  30. J. Han, G. Guo, J. Liu, L. Sui, F. Kong, S. Xiao, Y. Qin, Y. Zhang, Design of 100-MeV proton beam spreading scheme with double-ring double scattering method, Acta Physica Sinica 68 (2019), 054104.
  31. A.B. de Oliveira, L.A. Tambara, F.L. Kastensmidt, Applying lockstep in dual-core ARM Cortex-A9 to mitigate radiation-induced soft errors, in: 2017 IEEE 8th Latin American Symposium on Circuits & Systems, LASCAS, Bariloche, Argentina, 2017.