• 제목/요약/키워드: Association Rules Analysis

검색결과 402건 처리시간 0.033초

A Study on WT-Algorithm for Effective Reduction of Association Rules (효율적인 연관규칙 감축을 위한 WT-알고리즘에 관한 연구)

  • Park, Jin-Hee;Pi, Su-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제20권5호
    • /
    • pp.61-69
    • /
    • 2015
  • We are in overload status of information not just in a flood of information due to the data pouring from various kinds of mobile devices, online and Social Network Service(SNS) every day. While there are many existing information already created, lots of new information has been created from moment to moment. Linkage analysis has the shortcoming in that it is difficult to find the information we want since the number of rules increases geometrically as the number of item increases with the method of finding out frequent item set where the frequency of item is bigger than minimum support in this information. In this regard, this thesis proposes WT-algorithm that represents the transaction data set as Boolean variable item and grants weight to each item by making algorithm with Quine-McKluskey used to simplify the logical function. The proposed algorithm can improve efficiency of data mining by reducing the unnecessary rules due to the advantage of simplification regardless of number of items.

Discovering Temporal Relation Considering the Weight of Events in Multidimensional Stream Data Environment (다차원 스트림 데이터 환경에서 이벤트 가중치를 고려한 시간 관계 탐사)

  • Kim, Jae-In;Kim, Dae-In;Song, Myung-Jin;Han, Dae-Young;Hwang, Bu-Hyun
    • The Journal of the Korea Contents Association
    • /
    • 제10권2호
    • /
    • pp.99-110
    • /
    • 2010
  • An event means a flow which has a time attribute such as a symptom of patient. Stream data collected by sensors can be summarized as an interval event which has a time interval between the start-time point and the end-time point in multiple stream data environment. Most of temporal mining techniques have considered only the frequent events. However, these approaches may ignore the infrequent event even if it is important. In this paper, we propose a new temporal data mining that can find association rules for the significant temporal relation based on interval events in multidimensional stream data environment. Our method considers the weight of events and stream data on the sensing time point of abnormal events. And we can discover association rules on the significant temporal relation regardless of the occurrence frequency of events. The experimental analysis has shown that our method provide more useful knowledge than other conventional methods.

Mining Association Rules in Multidimensional Stream Data (다차원 스트림 데이터의 연관 규칙 탐사 기법)

  • Kim, Dae-In;Park, Joon;Kim, Hong-Ki;Hwang, Bu-Hyun
    • The KIPS Transactions:PartD
    • /
    • 제13D권6호
    • /
    • pp.765-774
    • /
    • 2006
  • An association rule discovery, a technique to analyze the stored data in databases to discover potential information, has been a popular topic in stream data system. Most of the previous researches are concerned to single stream data. However, this approach may ignore in mining to multidimensional stream data. In this paper, we study the techniques discovering the association rules to multidimensional stream data. And we propose a AR-MS method reflecting the characteristics of stream data since make the summarization information by one data scan and discovering the association rules for significant rare data that appear infrequently in the database but are highly associated with specific event. Also, AR-MS method can discover the maximal frequent item of multidimensional stream data by using the summarization information. Through analysis and experiments, we show that AR-MS method is superior to other previous methods.

Mining Association Rules from the Web Access Log of an Online News website (온라인 뉴스 웹사이트의 로그를 이용한 연관규칙 발견에 관한 연구)

  • Hwang, Hyunseok;Yoo, Keedong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제18권2호
    • /
    • pp.47-57
    • /
    • 2013
  • Today a lot of functional areas of a firm are operated on the Web. Online shopping malls analyze web log recording customers' activities on the web to connect them to business outcomes. Not only commercial websites, but online news sites also need to collect and analyze web logs to understand their news readers' interest. However, little research has been performed yet. In this research we mined the web access log of an online news website and conduct Market Basket Analysis to uncover the association rules among the categories of news articles. The research is composed of two stages: 1) Identifying the individual session of a visitor; 2) Mining association rule from news articles read by each session. We gather 7-day access logs two times. The results of log mining and meanings of association rules are suggested with managerial implications in conclusion section.

Mining Association Rule for the Abnormal Event in Data Stream Systems (데이터 스트림 시스템에서 이상 이벤트에 대한 연관 규칙 마이닝)

  • Kim, Dae-In;Park, Joon;Hwang, Bu-Hyun
    • The KIPS Transactions:PartD
    • /
    • 제14D권5호
    • /
    • pp.483-490
    • /
    • 2007
  • Recently mining techniques that analyze the data stream to discover potential information, have been widely studied. However, most of the researches based on the support are concerned with the frequent event, but ignore the infrequent event even if it is crucial. In this paper, we propose SM-AF method discovering association rules to an abnormal event. In considering the window that an abnormal event is sensed, SM-AF method can discover the association rules to the critical event, even if it is occurred infrequently. Also, SM-AF method can discover the significant rare itemsets associated with abnormal event and periodic event itemsets. Through analysis and experiments, we show that SM-AF method is superior to the previous methods of mining association rules.

Main Issues and Implications of ICC's 2019 Updated Note to Parties and Arbitral Tribunals on the Conduct of the Arbitration under the ICC Rules of Arbitration: A Focus on ICC's Policy on the Publication of Information Regarding Arbitral Tribunals and Awards (2019년 개정 ICC 중재 진행에 관한 당사자 및 중재판정부 지침의 주요내용과 시사점: ICC의 중재판정부 정보 공개 및 중재판정의 발간 정책을 중심으로)

  • Ahn, Keon-Hyung
    • Journal of Arbitration Studies
    • /
    • 제29권2호
    • /
    • pp.65-88
    • /
    • 2019
  • The ICC International Court of Arbitration ('the ICC') has published the Note to Parties and Arbitral Tribunals on the Conduct of the Arbitration under the ICC Rules of Arbitration ('2019 Revised Note) which came into force on the 1st of January 2019. The 2019 Revised Note is aimed at providing parties and arbitral tribunals with practical guidance regarding the conduct of arbitrations pursuant to the ICC Arbitration Rules as well as the practices of the ICC. Unless otherwise stipulated, the 2019 Revised Note applies to all ICC arbitration cases, regardless of the version of the ICC Arbitration Rules, in accordance with which they are conducted. The most noteworthy amendment is the introduction of provisions on a new mandatory transparency system by setting forth the publication of the arbitration case data and arbitral awards, maintaining the rule stipulating the provision of information regarding arbitral tribunal under the ICC 2016 Note. Among others, the 2019 Revised Note provides that parties and arbitrators in ICC arbitrations accept that ICC awards made as of the 1st of January 2019 may be published, excluding some exceptions. Under this circumstance, this paper i) explains five amendments of the 2019 ICC Revised Note, ii) examines major issues regarding the publication of information of arbitral tribunal and awards, iii) makes a comparative analysis of that attitude of 11 international arbitration institutions, and lastly iv) suggests recommendations for the Korean arbitration community.

Text Mining and Association Rules Analysis to a Self-Introduction Letter of Freshman at Korea National College of Agricultural and Fisheries (2) (한국농수산대학 신입생 자기소개서의 텍스트 마이닝과 연관규칙 분석 (2))

  • Joo, J.S.;Lee, S.Y.;Kim, J.S.;Shin, Y.K.;Park, N.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • 제22권2호
    • /
    • pp.99-114
    • /
    • 2020
  • In this study we examined the topic analysis and correlation analysis by text mining from the self introduction letter of freshman at Korea National College of Agriculture and Fisheries(KNCAF) in 2020. The analysis items of the 3rd question were and the 4th question were the motivation for applying to college, the academic plan and the career plan. The text mining to the 3rd question showed that the frequency of 'friends' was overwhelmingly high, followed by keywords such as 'thought', 'time', 'opinion', 'activity', and 'club'. In the 4th question, keyword frequency such as 'thought', 'agriculture', 'KNCAF', 'farm', 'father' was high. The result of association rules analysis for each question showed that the relationship with the highest support level, which means the frequency and importance of the rule, was the {friend} <=> {thought}, {thought} <=> {KNCAF}. The confidence level of a correlation between keywords was the highest in the rules of {teacher}=>{friend}, {agriculture, KNCAF}=>{thought}. Also the lift level that indicates the closeness of two words was the highest in the rules of {friend} <=> {teacher}, {knowledge} <=> {professional}. These keywords are found to play a very important roles in analyzing betweenness centrality and analyzing degree centrality between keywords. The results of frequency analysis and association analysis were visualized with word cloud and correlation graphs to make it easier to understand all the results.

An application of datamining approach to CQI using the discharge summary (퇴원요약 데이터베이스를 이용한 데이터마이닝 기법의 CQI 활동에의 황용 방안)

  • 선미옥;채영문;이해종;이선희;강성홍;호승희
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 한국지능정보시스템학회 2000년도 추계정기학술대회:지능형기술과 CRM
    • /
    • pp.289-299
    • /
    • 2000
  • This study provides an application of datamining approach to CQI(Continuous Quality Improvement) using the discharge summary. First, we found a process variation in hospital infection rate by SPC (Statistical Process Control) technique. Second, importance of factors influencing hospital infection was inferred through the decision tree analysis which is a classification method in data-mining approach. The most important factor was surgery followed by comorbidity and length of operation. Comorbidity was further divided into age and principal diagnosis and the length of operation was further divided into age and chief complaint. 24 rules of hospital infection were generated by the decision tree analysis. Of these, 9 rules with predictive prover greater than 50% were suggested as guidelines for hospital infection control. The optimum range of target group in hospital infection control were Identified through the information gain summary. Association rule, which is another kind of datamining method, was performed to analyze the relationship between principal diagnosis and comorbidity. The confidence score, which measures the decree of association, between urinary tract infection and causal bacillus was the highest, followed by the score between postoperative wound disruption find postoperative wound infection. This study demonstrated how datamining approach could be used to provide information to support prospective surveillance of hospital infection. The datamining technique can also be applied to various areas fur CQI using other hospital databases.

  • PDF

Customer Classification and Market Basket Analysis Using K-Means Clustering and Association Rules: Evidence from Distribution Big Data of Korean Retailing Company (군집분석과 연관규칙을 활용한 고객 분류 및 장바구니 분석: 소매 유통 빅데이터를 중심으로)

  • Liu, Run-Qing;Lee, Young-Chan;Mu, Hong-Lei
    • Knowledge Management Research
    • /
    • 제19권4호
    • /
    • pp.59-76
    • /
    • 2018
  • With the arrival of the big data era, customer data and data mining analysis have gradually dominated the process of Customer Relationship Management (CRM). This phenomenon indicates that customer data along with the use of information techniques (IT) have become the basis for building a successful CRM strategy. However, some companies can not discover valuable information through a large amount of customer data, which leads to the failure of making appropriate business strategy. Without suitable strategies, the companies may lose the competitive advantage or probably go bankrupt. The purpose of this study is to propose CRM strategies by segmenting customers into VIPs and Non-VIPs and identifying purchase patterns using the the VIPs' transaction data and data mining techniques (K-means clustering and association rules) of online shopping mall in Korea. The results of this paper indicate that 227 customers were segmented into VIPs among 1866 customers. And according to 51,080 transactions data of VIPs, home product and women wear are frequently associated with food, which means that the purchase of home product or women wears mainly affect the purchase of food. Therefore, marketing managers of shopping mall should consider these shopping patterns when they build CRM strategy.

A Study on the Issue Lifecycle through the Analysis of News Texts - A Case of Samsung Galaxy Note 7 - (신문기사 분석을 통한 이슈 라이프사이클에 관한 연구 - 삼성 갤럭시노트7 사례 -)

  • Heo, Pil Hee;Kim, Yang Sok;Lee, Choong Kwon
    • Smart Media Journal
    • /
    • 제7권4호
    • /
    • pp.99-105
    • /
    • 2018
  • It is often the case that products or services on the market are causing problems, which hurt the business and image of the company. Responding appropriately to the problem and minimizing the damage is very important to business organizations. This study collected and analyzed the news articles related to the recall of the Galaxy Note 7, which was developed and launched by Samsung Electronics, one of the smartphone market leaders. Based on the issue lifecycle, the characteristics of the news were expressed by stages and the contents of the news were analyzed and visualized using association rules. The results of this study are expected to help business organizations to understand the changes and trends of issues and search for counter measures.