• Title/Summary/Keyword: Assembly block

Search Result 274, Processing Time 0.025 seconds

Nondestructive, Quantitative Synchrotron Grazing Incidence X-ray Scattering Analysis of Cylindrical Nanostructure in Supported Thin Films

  • Yoon, Jin-Hwan;Yang, Seung-Yun;Lee, Byeong-Du;Joo, Won-Chul;Heo, Kyu-Young;Kim, Jin-Kon;Ree, Moon-Hor
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.300-300
    • /
    • 2006
  • Nondestructive nanostructural analysis is indispensable in the development of nano-materials and nano-fabrication processes for use in nanotechnology applications. In this paper, we demonstrate for the first time a quantitative, nondestructive analysis of nanostructured thin films supported on substrates and their templated nanopores by using grazing incidence X-ray scattering and data analysis with a derived scattering theory. Our analysis disclosed that vertically oriented nanodomain cylinders had formed in 20-100 nm thick films supported on substrates consisting of a mixture of poly(styrene-b-methyl methacrylate) (PS-b-PMMA) and PMMA homopolymer, and that the PMMA nanodomains were selectively etched out by ultraviolet light exposure and a subsequent rinse with acetic acid, resulting in a structure consisting of hexagonally packed cylindrical nanopores.

  • PDF

The Organization of Nanoporous Structure Using Controlled Micelle Size from MPEG-b-PDLLA Block Copolymers

  • Chang, Jeong-Ho;Kim, Kyung-Ja;Shin, Young-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.3
    • /
    • pp.351-356
    • /
    • 2004
  • Selected MPEG-b-PDLLA block copolymers have been synthesized by ring-opening polymerization with systematic variation of the chain lengths of the resident hydrophilic and hydrophobic blocks. The size and shape of the micelles that spontaneously form in solution are then controlled by the characteristics of the block copolymer template. All the materials prepared in this study showed the tunable pore size of 20-80 ${\AA}$ with the increase of hydrophobic chain lengths and up to 660 $m^2$/g of specific surface area. The formation mechanism of these nanoporous structures obtained by controlling the micelle size has been confirmed using both liquid and solid state $^{13}C\;and\;^{29}Si$ NMR techniques. This work verifies the formation mechanism of nanoporous structures in which the pore size and wall thickness are closely dependent on the size of hydrophobic cores and hydrophilic shells of the block copolymer templates.

Design and Implementation of User Feedback Block Editor for Dynamic E-Book (동적 전자책을 위한 블록 조립식 사용자 피드백 에디터 설계 및 구현)

  • Choi, Ja-Ryoung;Yun, Jihyun;Jang, Miyeon;Jang, Suji;Lim, Soon-Bim
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • Recently, as user feedback such as social reading become active, demand has been increased on e-book contents making which is based on user feedback. However, to reflect the user feedback onto the e-book, direct coding is required, which was difficult to the author who was not good at programming. To resolve this problem, Block assembly style feedback editor system, using Blockly was developed. This editor enables to reflect the user feedback by area allocation, component allocation, block editing, and code generating insertion, contrary to the existing way of programming realization in which direct coding was required for input, processing and output separately. This system was developed by using HTML. Javascript, PHP, and Codeigniter. Block editing is enabled to do provision and assembly of blocks by Blockly. The function of code generation & insertion allows to insert the Library function code. Through this system, the general users who are not capable of coding also can reflect feedback without doing actual coding.

Block Copolymer (BCP) 를 이용한 sub-50 nm 3차원 구조물 제작에 관한 연구

  • Sin, Jae-Hui;O, Jong-Sik;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.15-15
    • /
    • 2014
  • Block Copolymer(BCP) 는 self assembly 현상을 이용하여 다양한 pattern을 형성하는데 용이한 물질로써 이를 이용한 다양한 구조물 제작에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 hoe pattern 모양을 갖는 BCP 패턴을 이용하여 Atomic Layer Deposition(ALD) 및 Reactive Ion Etching(RIE) 공정을 이용한 3차원 quantum tube 구조물을 제작하였다.

  • PDF

A Study on the Structure Behavior of Dry-assembled Wall with Concrete Blocks subjected to Cyclic Lateral Load (콘크리트블록으로 건식조립된 벽체의 수평반복하중에 대한 구조거동 연구)

  • Lee, Joong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.440-447
    • /
    • 2020
  • Masonry structures are used as bearing walls in small buildings, but they are generally considered non-bearing walls. They are used as partition walls that divide the interior spaces of the frame structures of buildings. In addition, wetting techniques that use mortar as an adhesive between blocks or bricks in construction are vulnerable to climatic conditions, especially cracks in mortar, which can cause conduction collapse of the walls in seismic loading. The purpose of this research was to propose a dry concrete block construction method that complements the weak axial shear stiffness and improves the weakness of the wet construction method as well as to investigate its structural behavior. In this study, the material properties of concrete blocks were examined, and the seismic performance of the proposed dry assembly structure was verified by structural behavior tests on horizontal cyclic loads. First, in these study results, concrete blocks can be applied to the dry block construction method instead of wet construction methods because they secure more than C-type blocks in KS regulations. Second, the structural performance of the wall against a horizontal cyclic load indicates that the resisting force of the assembly block wall is increased by increasing the horizontal length of the wall, forming several diagonal cracks. Finally, the proposed dry block wall structure requires a seismic performance assessment considering that the ratio of the shape of the wall by height and length is considered a major influence variable on the structural behavior under a horizontal load.

Preparation of Nanostructures Using Layer-by-Layer Assembly and Applications (층상자기조립법을 이용한 나노구조체의 제조와 응용)

  • Cho, Jin-Han
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.81-90
    • /
    • 2010
  • We introduce a novel and versatile approach for preparing self-assembled nanoporous multilayered films with antireflective properties. Protonated polystyrene-block-poly (4-vinylpyrine) (PS-b-P4VP) and anionic polystyrene-block-poly (acrylic acid) (PS-b-PAA) block copolymer micelles (BCM) were used as building blocks for the layer-by-layer assembly of BCM multilayer films. BCM film growth is governed by electrostatic and hydrogen-bonding interactions between the oppositely BCMs. Both film porosity and film thickness are dependent upon the charge density of the micelles, with the porosity of the film controlled by the solution pH and the molecular weight (Mw) of the constituents. PS7K-b-P4VP28K/PS2K-b-PAA8K films prepared at pH 4 (for PS7K-b-P4VP28K) and pH 6 (for PS2K-b-PAA8K) are highly nanoporous and antireflective. In contrast, PS7K-b-P4VP28K/PS2K-b-PAA8K films assembled at pH 4/4 show a relatively dense surface morphology due to the decreased charge density of PS2K-b-PAA8K. Films formed from BCMs with increased PS block and decreased hydrophilic block (P4VP or PAA) size (e.g., PS36K-b-P4VP12K/PS16K-b-PAA4K at pH 4/4) were also nanoporous. Furthermore, we demonstrate that the nanostructured electrochemical sensors based on patterning methods show the electrochemical activities. Anionic poly(styrene sulfonate) (PSS) layers were selectively and uniformly deposited onto the catalase (CAT)-coated surface using the micro-contact printing method. The pH-induced charge reversal of catalase can provide the selective deposition of consecutive PE multilayers onto patterned PSS layers by causing the electrostatic repulsion between next PE layer and catalase. Based on this patterning method, the hybrid patterned multilayers composed of platinum nanoparticles (PtNP) and catalase were prepared and then their electrochemical properties were investigated from sensing $H_2O_2$ and NO gas. This study was based on the papers reported by our group. (J. Am. Chem. Soc. 128, 9935 (2006); Adv. Mater. 19, 4364 (2007); Electro. Mater. Lett. 3, 163 (2007)).

Direct Patterning of Self Assembled Nano-Structures of Block Copolymers via Electron Beam Lithography

  • Yoon Bo Kyung;Hwang Wonseok;Park Youn Jung;Hwang Jiyoung;Park Cheolmin;Chang Joonyeon
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.435-440
    • /
    • 2005
  • This study describes a method where the match of two different length scales, i.e., the patterns from self-assembled block copolymer (<50 nm) and electron beam writing (>50 nm), allow the nanometer scale pattern mask. The method is based on using block copolymers containing a poly(methyl methacrylate) (PMMA) block, which is subject to be decomposed under an electron beam, as a pattern resist for electron beam lithography. Electron beam on self assembled block copolymer thin film selectively etches PMMA microdomains, giving rise to a polymeric nano-pattern mask on which subsequent evaporation of chromium produces the arrays of Cr nanoparticles followed by lifting off the mask. Furthermore, electron beam lithography was performed on the micropatterned block copolymer film fabricated by micro-imprinting, leading to a hierarchical self assembled pattern where a broad range of length scales was effectively assembled, ranging from several tens of nanometers, through submicrons, to a few microns.

A Case Study on the Verification of the Initial Layout of Engine Block Machining Line Using Simulation (엔진블럭 가공라인 초기설계안 검증을 위한 시뮬레이션 사례연구)

  • 문덕희;성재헌;조현일
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.3
    • /
    • pp.41-53
    • /
    • 2003
  • The major components of an engine are engine block (or cylinder block), cylinder head, crank shaft, connecting rod and cam shaft. Thus the engine shop usually consists of six sub-lines, five machining lines and one assembly line. Flow line is the typical concept of layout for machining these parts, especially for engine block. In order to design an engine block machining line, several factors should be considered such as yearly production target, working hours, machines, tools, material handling equipments and so on. If the designers of manufacturing line were unaware of some factors those would be influenced on the system performance, it would make greater problems in the phase of mass production. Therefore the initial design of engine block machining line should be verified carefully. Simulation is the most powerful tool for analyzing the initial layout. This paper introduces the major factors those should be considered for designing the machining line and their effects on the system performance. 3D simulation models are developed with QUEST. Using the simulation model developed the initial layout is analyzed, and we suggest some ideas for improvement.

  • PDF

Analysis Framework using Process Mining for Block Movement Process in Shipyards (조선 산업에서 프로세스 마이닝을 이용한 블록 이동 프로세스 분석 프레임워크 개발)

  • Lee, Dongha;Bae, Hyerim
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.577-586
    • /
    • 2013
  • In a shipyard, it is hard to predict block movement due to the uncertainty caused during the long period of shipbuilding operations. For this reason, block movement is rarely scheduled, while main operations such as assembly, outfitting and painting are scheduled properly. Nonetheless, the high operating costs of block movement compel task managers to attempt its management. To resolve this dilemma, this paper proposes a new block movement analysis framework consisting of the following operations: understanding the entire process, log clustering to obtain manageable processes, discovering the process model and detecting exceptional processes. The proposed framework applies fuzzy mining and trace clustering among the process mining technologies to find main process and define process models easily. We also propose additional methodologies including adjustment of the semantic expression level for process instances to obtain an interpretable process model, definition of each cluster's process model, detection of exceptional processes, and others. The effectiveness of the proposed framework was verified in a case study using real-world event logs generated from the Block Process Monitoring System (BPMS).