DOI QR코드

DOI QR Code

Preparation of Nanostructures Using Layer-by-Layer Assembly and Applications

층상자기조립법을 이용한 나노구조체의 제조와 응용

  • Cho, Jin-Han (School of Advanced Materials Engineering, Kookmin University)
  • 조진한 (국민대학교 신소재공학부)
  • Received : 2009.10.21
  • Accepted : 2009.12.10
  • Published : 2010.03.30

Abstract

We introduce a novel and versatile approach for preparing self-assembled nanoporous multilayered films with antireflective properties. Protonated polystyrene-block-poly (4-vinylpyrine) (PS-b-P4VP) and anionic polystyrene-block-poly (acrylic acid) (PS-b-PAA) block copolymer micelles (BCM) were used as building blocks for the layer-by-layer assembly of BCM multilayer films. BCM film growth is governed by electrostatic and hydrogen-bonding interactions between the oppositely BCMs. Both film porosity and film thickness are dependent upon the charge density of the micelles, with the porosity of the film controlled by the solution pH and the molecular weight (Mw) of the constituents. PS7K-b-P4VP28K/PS2K-b-PAA8K films prepared at pH 4 (for PS7K-b-P4VP28K) and pH 6 (for PS2K-b-PAA8K) are highly nanoporous and antireflective. In contrast, PS7K-b-P4VP28K/PS2K-b-PAA8K films assembled at pH 4/4 show a relatively dense surface morphology due to the decreased charge density of PS2K-b-PAA8K. Films formed from BCMs with increased PS block and decreased hydrophilic block (P4VP or PAA) size (e.g., PS36K-b-P4VP12K/PS16K-b-PAA4K at pH 4/4) were also nanoporous. Furthermore, we demonstrate that the nanostructured electrochemical sensors based on patterning methods show the electrochemical activities. Anionic poly(styrene sulfonate) (PSS) layers were selectively and uniformly deposited onto the catalase (CAT)-coated surface using the micro-contact printing method. The pH-induced charge reversal of catalase can provide the selective deposition of consecutive PE multilayers onto patterned PSS layers by causing the electrostatic repulsion between next PE layer and catalase. Based on this patterning method, the hybrid patterned multilayers composed of platinum nanoparticles (PtNP) and catalase were prepared and then their electrochemical properties were investigated from sensing $H_2O_2$ and NO gas. This study was based on the papers reported by our group. (J. Am. Chem. Soc. 128, 9935 (2006); Adv. Mater. 19, 4364 (2007); Electro. Mater. Lett. 3, 163 (2007)).

층과 층 사이의 정전기적인력, 수소결합 또는 공유결합을 이용하여 층당 두께를 수 옹스트롱에서부터 수십 나노미터까지 제조할 수 있으며 박막의 표면 형태를 흡착시키고자 하는 물질 및 박막 후처리 공정을 통해 제어할 수 있으며 더 나아가, 삽입하는 물질의 특성에 따라 박막의 기능성을 집적화 및 다양화시킬 수 있다. 본 연구에서는 이러한 층상자기조립방법의 특성을 이용하여 반사방지막, 초소수성 필름 및 전기화학센서로의 응용가능성을 제시하였다. 반사방지막의 경우, 구형의 블록공중합체를 유리기판 위에 다층박막으로 적층시킴으로써 박막 굴절률을 1.25까지 감소시켰고 이를 통해 약 99.5%의 빛 투과도를 달성할 수 있었다. 더 나아가 바이오물질인 엔자임을 다층박막에 삽입시킬 경우, 활성 산소를 분해시키는 전기화학센서로의 제조가 가능함을 보인다. 본 연구는 본인이 이미 발표한 논문(J. Am. Chem. Soc. 128, 9935 (2006); Adv. Mater. 19, 4364 (2007); Electro. Mater. Lett. 3, 163 (2007))들을 정리하여 층상자기조립법에 관해 소개하는 논문이다.

Keywords

References

  1. S. L. Clark, M. F. Montague, and P. T. Hammond, Macromolecules 30, 7237 (1997). https://doi.org/10.1021/ma970610s
  2. S. L. Clark and P. T. Hammond, Adv. Mater. 10, 1515 (1998). https://doi.org/10.1002/(SICI)1521-4095(199812)10:18<1515::AID-ADMA1515>3.0.CO;2-E
  3. S. L. Clark, E. S. Handy, M. F. Rubner, and P. T. Hammond, Adv. Mater. 11, 1031 (1999). https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<1031::AID-ADMA1031>3.0.CO;2-Q
  4. I. Lee, H. Zheng, M. F. Rubner, and P. T. Hammond, Adv. Mater. 14, 572 (2002). https://doi.org/10.1002/1521-4095(20020418)14:8<572::AID-ADMA572>3.0.CO;2-B
  5. H. Zheng, I. Lee, M. F. Rubner, and P. T. Hammond, Adv. Mater. 14, 569 (2002). https://doi.org/10.1002/1521-4095(20020418)14:8<569::AID-ADMA569>3.0.CO;2-O
  6. X.-P. Jiang, S. L. Clark, and P. T. Hammond, Adv. Mater. 13, 1669 (2001). https://doi.org/10.1002/1521-4095(200111)13:22<1669::AID-ADMA1669>3.0.CO;2-9
  7. D. M. Sullivan and M. L. Bruening, J. Am. Chem. Soc. 123, 11805 (2001). https://doi.org/10.1021/ja016536h
  8. S. T. Dubas, T. R. Farhat, and J. B. Schlenoff, J. Am. Chem. Soc. 123, 5368 (2001). https://doi.org/10.1021/ja015774+
  9. H. H. Rmaile and J. B. Schlenoff, J. Am. Chem. Soc. 125, 6602 (2003). https://doi.org/10.1021/ja035251x
  10. B. W. Stanton, J. J. Harris, M. D. Miller, and M. L. Bruening, Langmuir 19, 7038 (2003). https://doi.org/10.1021/la034603a
  11. F. Caruso, R. A. Caruso, and H. Mohwald, Science 282, 1111 (1998) https://doi.org/10.1126/science.282.5391.1111
  12. G. Ibarz, L. Dahne, E. Donath, and H. Mohwald, Adv. Mater. 13, 1324 (2001). https://doi.org/10.1002/1521-4095(200109)13:17<1324::AID-ADMA1324>3.0.CO;2-L
  13. Z. Dai, A. Voigt, S. Leporatti, E. Donath, L. Dahne, and H. Mohwald, Adv. Mater. 13, 1339 (2001). https://doi.org/10.1002/1521-4095(200109)13:17<1339::AID-ADMA1339>3.0.CO;2-Q
  14. E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, and H. Mohwald, Angew. Chem. Int. Ed. 37, 2201 (1998). https://doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO;2-E
  15. J. Hiller, J. D. Mendelsohn, and M. F. Rubner, Nature Materials 1, 59 (2002). https://doi.org/10.1038/nmat719
  16. J. Hong, W. K. Bae, S. Oh, H. Lee, K. Char, F. Caruso, and J. Cho, Adv. Mater. 19, 4364 (2007). https://doi.org/10.1002/adma.200701362
  17. A. Yu and F. Caruso, Anal. Chem. 75, 3031 (2003). https://doi.org/10.1021/ac0340049
  18. A. Yu, Z. Liang, J. Cho, and F. Caruso, Nano Lett. 3, 1203 (2003). https://doi.org/10.1021/nl034363j
  19. J. Park, I. Kim, H. Shin, Y. S. Kim, J. Bang, F. Caruso, and J. Cho, Adv. Mater. 20, 1843 (2008). https://doi.org/10.1002/adma.200702407
  20. G. Decher, J.-D. Hong, and J. Schmitt, Macromol. Chem. Macromol. Symp. 46, 321 (1991). https://doi.org/10.1002/masy.19910460145
  21. G. Decher, Science 277, 1232 (1997). https://doi.org/10.1126/science.277.5330.1232
  22. G. K. Such, J. F. Quinn, A. Quinn, E. Tjipto, and F. Caruso, J. Am. Chem. Soc. 128, 9318 (2006). https://doi.org/10.1021/ja063043+
  23. S.-F. Chong, R. Chandrawati, B. Stadler, J. Park, J. Cho, Y. Wang, Z. Jia, V. Bulmus, and T. P. Davis, Small 5, 2601 (2009). https://doi.org/10.1002/smll.200900906
  24. S. Lee, B. Lee, B. J. Kim, J. Park, W. K. Bae, K. Char, C. J. Hawker, J. Bang, and J. Cho, J. Am. Chem. Soc. 131, 2579 (2009). https://doi.org/10.1021/ja8064478
  25. J. Cho, J. Hong, F. Caruso, and K. Char, J. Am. Chem. Soc. 128, 9935 (2006). https://doi.org/10.1021/ja062437y
  26. J. Cho, Electro. Mater. Lett. 3, 163 (2007).
  27. D. Buttry, Advances in electroanalytical chemistry: Applications of the QCM to electrochemistry. (Marcel Dekker, New York, 1991), pp. 24-32.
  28. F. Patolsky, E. Katz, A. Bardea, and T. Willner, Langmuir, 15, 3703 (1999). https://doi.org/10.1021/la981682v