• Title/Summary/Keyword: Artificial Intelligent Model

Search Result 391, Processing Time 0.02 seconds

Artificial Intelligence in Library Instruction (인공지능을 이용한 도서관 이용자 교육)

  • Tak, Hae-Kyung
    • Journal of Information Management
    • /
    • v.27 no.3
    • /
    • pp.41-60
    • /
    • 1996
  • Export system using artificial intelligence give the technology for the varied library user instruction. Expert system showing problem solving process give educational effectives. In this paper, expert system are reviewed to discuss the application possibility in education and the model of intelligent tutoring system(ITS) applying artificial intelligence is presented.

  • PDF

Disapproval Judgment System of Research Fund Execution Details Based on Artificial Intelligence

  • Kim, Yongkuk;Juan, Tan;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.142-147
    • /
    • 2021
  • In this paper, we propose an intelligent research fund management system that applies artificial intelligence technology to an integrated research fund management system. By defining research fund management rules as work rules, a detection model learned using deep learning is designed, through which the disapproval status is presented for each research fund usage history. The disapproval detection system of the RCMS implemented in this study predicts whether the newly registered usage details are recognized or disapproved using an artificial intelligence model designed based on the use of an 8.87 million research fund registered in the RCMS. In addition, the item-detail recommendation system described herein presents the usage details according to the usage history item newly registered by the artificial intelligence model through a correlation between the research cost usage details and the item itself. The accuracy of the recommendation was shown to be 97.21%.

Behavior Analysis of Evolved Neural Network based on Cellular Automata

  • Song, Geum-Beom;Cho, Sung-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.181-184
    • /
    • 1998
  • CAM-Brain is a model to develop neural networks based in cellular automata by evolution, and finally aims at a model as and artificial brain,. In order to show the feasibility of evolutionary engineering to develop an artificial brain we have attempted to evolve a module of CAM-Brain for the problem to control a mobile robot, In this paper, we present some recent results obtained by analyzing the behaviors of the evolved neural module. Several experiments reveal a couple of problems that should be solved when CAM-Brain evolves to control a mobile robot. so that some modification of the original model is proposed to solve them. The modified CAM-Brain has evolved to behave well in a simulated environment, and a thorough analysis proves the power of evolution.

  • PDF

Convolutional GRU and Attention based Fall Detection Integrating with Human Body Keypoints and DensePose

  • Yi Zheng;Cunyi Liao;Ruifeng Xiao;Qiang He
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2782-2804
    • /
    • 2024
  • The integration of artificial intelligence technology with medicine has rapidly evolved, with increasing demands for quality of life. However, falls remain a significant risk leading to severe injuries and fatalities, especially among the elderly. Therefore, the development and application of computer vision-based fall detection technologies have become increasingly important. In this paper, firstly, the keypoint detection algorithm ViTPose++ is used to obtain the coordinates of human body keypoints from the camera images. Human skeletal feature maps are generated from this keypoint coordinate information. Meanwhile, human dense feature maps are produced based on the DensePose algorithm. Then, these two types of feature maps are confused as dual-channel inputs for the model. The convolutional gated recurrent unit is introduced to extract the frame-to-frame relevance in the process of falling. To further integrate features across three dimensions (spatio-temporal-channel), a dual-channel fall detection algorithm based on video streams is proposed by combining the Convolutional Block Attention Module (CBAM) with the ConvGRU. Finally, experiments on the public UR Fall Detection Dataset demonstrate that the improved ConvGRU-CBAM achieves an F1 score of 92.86% and an AUC of 95.34%.

The Intelligent Blockchain for the Protection of Smart Automobile Hacking

  • Kim, Seong-Kyu;Jang, Eun-Sill
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

Study on the Application of Artificial Intelligence Model for CT Quality Control (CT 정도관리를 위한 인공지능 모델 적용에 관한 연구)

  • Ho Seong Hwang;Dong Hyun Kim;Ho Chul Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.182-189
    • /
    • 2023
  • CT is a medical device that acquires medical images based on Attenuation coefficient of human organs related to X-rays. In addition, using this theory, it can acquire sagittal and coronal planes and 3D images of the human body. Then, CT is essential device for universal diagnostic test. But Exposure of CT scan is so high that it is regulated and managed with special medical equipment. As the special medical equipment, CT must implement quality control. In detail of quality control, Spatial resolution of existing phantom imaging tests, Contrast resolution and clinical image evaluation are qualitative tests. These tests are not objective, so the reliability of the CT undermine trust. Therefore, by applying an artificial intelligence classification model, we wanted to confirm the possibility of quantitative evaluation of the qualitative evaluation part of the phantom test. We used intelligence classification models (VGG19, DenseNet201, EfficientNet B2, inception_resnet_v2, ResNet50V2, and Xception). And the fine-tuning process used for learning was additionally performed. As a result, in all classification models, the accuracy of spatial resolution was 0.9562 or higher, the precision was 0.9535, the recall was 1, the loss value was 0.1774, and the learning time was from a maximum of 14 minutes to a minimum of 8 minutes and 10 seconds. Through the experimental results, it was concluded that the artificial intelligence model can be applied to CT implements quality control in spatial resolution and contrast resolution.

Development of Digital PWM Attitude Controller for Nonlinear Artificial Satellites Using Intelligent Digital Redesign (지능형 디지털 재설계를 이용한 비선형 인공위성의 디지털 PWM 정밀 자세 제어기의 개발)

  • Joo, Young-Hoon;Lee, Ho-Jae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.726-731
    • /
    • 2004
  • This paper proposes a pulse-width-modulation (PWM) controller design technique using intelligent digital redesign. Intelligent digital redesign is to convert a well-designed analog fuzzy-model-based controller into an equivalent pulse-amplitude-modulation (PAM) digital controller maintaining the original analog control system in the sense of state-matching. In similar line of conversion concept, the redesigned PAM intelligent digital controller is converted into a PWM controller using the equivalent area principle. To convincingly visualize the proposed technique, an computer simulation example-attitude control of nonlinear artificial satellite system is included.

A Study on the Prediction of Fatigue Damage in 2024-T3 Aluminium Alloy Using Neural Networks (신경회로망을 이용한 AI 2024-T3합금의 피로손상예측에 관한 연구)

  • Cho, Seok-Swoo;Jang, Deuk-Yul;Joo, Won-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.168-177
    • /
    • 1999
  • Fatigue damage is the phenomena which is accumulated gradually with loading cycle in material. It is represented by fatigue crack growth rate da/dN and fatigue life ratio $N/N_{f}$. Fracture mechanical parameters estimating large crack growth behavior can calculate quantitative amount of fatigue crack growth resistance in engineering material. But fatigue damage has influence on various load, material and environment. Therefore, In this study, we propose that artificial intelligent fatigue damage model can predicts fatigue crack growth rate da/dN and fatigue life ratio $N/N_{f}$ simultaneously using fracture mechanical and nondestructive parameters.

  • PDF

An application of BP-Artificial Neural Networks for factory location selection;case study of a Korean factory

  • Hou, Liyao;Suh, Eui-Ho
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.351-356
    • /
    • 2007
  • Factory location selection is very important to the success of operation of the whole supply chain, but few effective solutions exist to deliver a good result, motivated by this, this paper tries to introduce a new factory location selection methodology by employing the artificial neural networks technology. First, we reviewed previous research related to factory location selection problems, and then developed a (neural network-based factory selection model) NNFSM which adopted back-propagation neural network theory, next, we developed computer program using C++ to demonstrate our proposed model. then we did case study by choosing a Korean steelmaking company P to show how our proposed model works,. Finnaly, we concluded by highlighting the key contributions of this paper and pointing out the limitations and future research directions of this paper. Compared to other traditional factory location selection methods, our proposed model is time-saving; more efficient.and can produce a much better result.

  • PDF

Design of an Artificial Emotion Model (인공 감정 모델의 설계)

  • Lee, In-K.;Seo, Suk-T.;Jeong, Hye-C.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.648-653
    • /
    • 2007
  • Researches on artificial emotion which generates emotion artificially from various external excitations imitating human emotion has been initiated in recent years. But the conventional studies in which the emotion state is changed exponentially or linearly by external emotion excitation have a drawback that the variation of emotion state is changed rapidly and abruptly. In this paper, we propose an artificial emotion generation model which reflects not only strength and frequency of external emotion excitations but also period of it in the emotion state and represents the emotion state with a sigmoid curve w.r.t. time. And we propose an artificial emotion system which generates emotion at the situation of no external emotional excitations through recollection of past emotional excitations, and show its effectiveness through computer simulation results.