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Abstract 
 
The integration of artificial intelligence technology with medicine has rapidly evolved, with 
increasing demands for quality of life. However, falls remain a significant risk leading to 
severe injuries and fatalities, especially among the elderly. Therefore, the development and 
application of computer vision-based fall detection technologies have become increasingly 
important. In this paper, firstly, the keypoint detection algorithm ViTPose++ is used to obtain 
the coordinates of human body keypoints from the camera images. Human skeletal feature 
maps are generated from this keypoint coordinate information. Meanwhile, human dense 
feature maps are produced based on the DensePose algorithm. Then, these two types of feature 
maps are confused as dual-channel inputs for the model. The convolutional gated recurrent 
unit is introduced to extract the frame-to-frame relevance in the process of falling. To further 
integrate features across three dimensions (spatio-temporal-channel), a dual-channel fall 
detection algorithm based on video streams is proposed by combining the Convolutional Block 
Attention Module (CBAM) with the ConvGRU. Finally, experiments on the public UR Fall 
Detection Dataset demonstrate that the improved ConvGRU-CBAM achieves an F1 score of 
92.86% and an AUC of 95.34%. 
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1. Introduction 

With the intensification of aging, falls have become the foremost factor affecting the health 
and later life of the elderly, being one of the primary causes of fractures, brain injuries, and 
other bodily harm. Furthermore, falls constitute a severe public health issue, imposing 
substantial burdens on the healthcare and social welfare systems, including medical expenses, 
rehabilitation costs, and potentially long-term care costs. At the same time, fall detection 
technology also offers crucial support for the independent living of individuals with disabilities, 
making the work of fall detection incredibly vital [1]. 

Currently, there has been a significant body of representative research in fall detection, 
primarily divided into three types: systems based on wearable sensor devices [2-5], 
environment-installed sensors [6,7], and vision technology [8-10]. Wearable systems typically 
measure the subject's movement through accelerometers worn on the body [2,3] and identify 
falls using algorithms [4,5], but they can interfere with normal activities. Meanwhile, sensor 
devices can be installed within the environment [6], such as on walls [7], but this approach is 
subject to environmental constraints and high costs. At present, the most widely applied 
method involves using cameras [8,10] combined with deep learning algorithms for fall 
detection, although this can lead to significant prediction time costs. These camera-based fall 
detection systems rely heavily on real-time data transmission and processing, and robust and 
efficient 5G wireless communication technologies now provide reliable and efficient data 
transmission guarantees. Secondly, the multi-area camera, by means of edge computing, 
allows the deployment of multi-camera systems to perform initial data processing and analysis 
on edge devices, and then transmit the results of the processing to a centralized server or cloud 
service via a wireless network. Finally through wireless communication technology, the 
camera-based fall detection system can be remotely monitored and supported. Healthcare 
professionals can access the patient's activity status in real time over the wireless network and 
quickly intervene before a fall event occurs. 

To address the challenge of predicting falls before they occur, we consider the use of dual-
channel feature maps. Skeletal keypoint maps and dense feature maps enable an accurate 
understanding and analysis of human posture and movement. Therefore, this paper utilizes 
dual-channel information as the foundation for our research. Initially, the ViTPose++ keypoint 
detection algorithm [11] is applied to the public UR Fall Detection Dataset [12] for keypoint 
detection, thereby acquiring skeletal keypoint data to generate skeletal feature maps. 
Subsequently, the DensePose algorithm [13] is used on the same dataset to produce dense 
feature maps of the human body, thereby enriching the data features through a dual-channel 
approach. 

In this study, we propose a fall detection algorithm that leverages the strengths of 
Convolutional Gated Recurrent Unit (ConvGRU) and Convolutional Block Attention Module 
(CBAM). The choice of these algorithms is driven by their respective advantages in handling 
spatio-temporal data and enhancing feature representation. 

ConvGRU [66] combines the capabilities of Convolutional Neural Networks (CNN) and 
Gated Recurrent Units (GRU), allowing for effective extraction of spatial features from image 
sequences and capturing temporal dependencies crucial for fall detection. Compared to 
traditional GRU, ConvGRU employs convolution operations that better capture spatial context 
within video frames, essential for recognizing fall events. Meanwhile, CBAM [14] integrates 
spatial and channel attention mechanisms, significantly improving the model's ability to focus 
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on important features while suppressing irrelevant background noise. This enhancement is 
critical in fall detection tasks, where distinguishing between relevant human movements and 
background activities can greatly affect accuracy. 

In this paper, we designed a dual-channel fall detection model. Initially, we use the 
ViTPose++ algorithm to extract human keypoint coordinates and generate skeletal feature 
maps. Simultaneously, DensePose algorithm is used to create dense feature maps of the human 
body. These feature maps serve as dual-channel inputs to the ConvGRU-CBAM model. The 
ConvGRU processes temporal correlations, while CBAM enhances feature representation, 
leading to efficient and accurate fall detection. The introduction of the attention mechanism 
enables the model to suppress some environmental noise and irrelevant actions, ultimately 
achieving an F1 score of 0.9286 on a public UR Fall Detection Dataset. 

2. Related work 
The current fall detection systems [15-20] have seen significant achievements by scholars 

in various directions, mainly categorized into three types. Systems based on wearable sensors 
[21,22] generally perform fall detection by measuring certain kinematic parameters. For 
instance, Barshan et al. [23] introduced a heuristic fall detection algorithm that combines the 
double threshold of two simple features and fuzzy logic technology to extract features from 
the accelerometer and gyroscope data recorded by a motion sensor unit worn on the waist, 
offering good real-time performance but at the inconvenience of wearing, which affects daily 
activities. On the other hand, the lack of real data remains a significant challenge for fall 
detection algorithms. Mosquera-Lopez et al. [24] addressed this issue by proposing a context-
aware fall detection system algorithm based on inertial sensors and flight time sensors, using 
fall data provided by patients with Multiple Sclerosis (MS). This algorithm uses an 
autoencoder combined with the reconstruction error of the worn accelerometer signal to detect 
fall candidates, followed by fall detection using a balanced random forest trained on 
acceleration and motion features. However, this approach has limitations, such as affecting 
real-time performance due to two rounds of candidate detection and increasing the 
inconvenience of walking for patients due to wearing sensors, which does not guarantee the 
accuracy of real data. Nonetheless, with the continuous development of smart healthcare, fall 
detection algorithms can also be applied to public healthcare systems, but there are limitations 
in operability and technical issues such as high power consumption. Therefore, Qian et al. [25] 
proposed a wearable fall detection system based on a multi-level threshold algorithm that 
combines Micro-Electro-Mechanical Systems (MEMS) with Narrowband Internet of Things 
(NB-IoT) for fall detection, providing a user interface tailored for healthcare professionals. 
Among these methods, each has its advantages and limitations, thus making the balance 
between real-time performance, data accuracy, and user convenience a focal point of research 
in fall detection systems. 

To address the inconvenience of wearing sensors, devices can be installed within the 
environment, with numerous studies utilizing radar and Wi-Fi for detection. Radar sensor 
systems [26-28], with their non-contact nature and adaptability to environmental conditions, 
offer a potential solution for fall detection. For instance, He et al. [29] developed a novel non-
contact fall detector based on MEMS low-resolution infrared sensors and radar sensors for 
detecting falls beside the bed. Additionally, a millimeter-wave Frequency-Modulated 
Continuous-Wave (FMCW) radar based on Pattern Contour Vector (PCV) [30] can also be 
used for fall detection, featuring advantages such as not requiring to be worn, being 
inconspicuous, non-invasive, and privacy-preserving. With the continuous advancement of 
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deep learning, increasing research integrates neural networks with traditional methods [32,33] 
to enhance the accuracy of fall detection. For example, Sadreazami et al. [31] applied short-
time Fourier transform to each radar echo signal for time-frequency analysis, converting the 
resulting spectrograms into binary images as inputs for convolutional neural networks. 
Moreover, Wi-Fi technology [34-38] has also shown potential in the field of fall detection. 
These studies demonstrate various methods of utilizing Wi-Fi signals for fall detection but also 
face challenges regarding signal accuracy, environmental interference, and reliability. 

With the evolution of computer vision technology, image-based fall detection systems 
[39,40,42] are increasingly emerging. For instance, an unsupervised method for fall detection 
[41] initially converts RGB video frames into human posture images to eliminate background 
interference, focus on human motion, and protect privacy. Then, based on conditional 
Generative Adversarial Networks, it uses a sequence of historical human posture images to 
predict future posture images. Finally, fall detection is achieved by using the prediction error 
of human posture images and the anomaly scores calculated from traditional handcrafted 
features of the actual posture. Currently, deep learning employs multimodal methods [43-45] 
for fall detection, but multimodal approaches face challenges in maximizing the value of 
information collected from different modalities during clinical assessments and in enhancing 
the performance of fall detection. 

Image-based fall detection systems have become the most popular method due to their 
low cost and lack of environmental constraints. Bedside falls are a critical issue in elderly care, 
leading to the proposal of various bedside monitoring systems [15] for detecting such falls. 
Fall detection based on human keypoints is another direction in image technology, with 
numerous algorithms for detecting human keypoints emerging. Among these, the ViTPose++ 
algorithm, based on the Vision Transformer, is currently the most favored for keypoint 
detection. This algorithm has been widely applied in areas such as human posture estimation 
[47,48,67], action recognition [49], and visual object detection [50]. For instance, [51] and 
others have utilized keypoints obtained by the ViTPose algorithm to propose a multimodal 
gait recognition method, which integrates multiple posture representation models to 
comprehensively describe the way people walk.  

Additionally, the use of dense maps from DensePose for posture analysis is another image 
technology application, also extensively used in human-related virtual reality [52-55], object 
detection segmentation [55-58], posture estimation [59-61], and action recognition tracking 
[62-64]. For example, [65] and others employed the DensePose human body model and 
posture extraction strategy to construct an industrial robot posture recognition model, then 
accurately and efficiently recognized the posture of industrial robots by inputting individual 
robot images into a high-precision posture estimation network. Therefore, this paper first 
generates human skeletal graphs using the ViTPose++ [11] keypoint detection algorithm, then 
produces dense feature maps of the human body using the DensePose [13] algorithm. Based 
on image vision technology, combined with deep learning's recurrent neural networks (RNN) 
and attention mechanisms, a dual-channel fall prediction system based on video streams is 
proposed, utilizing both human skeletal graphs and dense feature maps. 
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3. Data preparation 

3.1 Human keypoint detection 
The Vision Transformer (ViT) [46] is a deep learning model architecture for the field of 

computer vision, surpassing traditional CNN models in tasks such as image classification, 
semantic segmentation, and keypoint detection. ViTPose++ represents the first integration of 
the ViT keypoint detection algorithm in the task of posture estimation, using the ViT structure 
as the backbone along with a lightweight decoder, making it the most effective model for 
detecting keypoints on the MS COCO validation set currently. 

This paper utilizes ViTPose++ to acquire a human skeletal keypoint dataset, employing 
the same data format as the MS COCO keypoint dataset, which includes the two-dimensional 
coordinates and confidence levels of 17 human body keypoints. By detecting every frame, a 
one-dimensional keypoint vector 𝐻𝐻′ is obtained by 

 
 𝐻𝐻′ = [(𝑥𝑥0′ ,𝑦𝑦0′ , 𝑠𝑠0′ ), … , (𝑥𝑥𝑖𝑖′,𝑦𝑦𝑖𝑖′, 𝑠𝑠𝑖𝑖′)], (0 ≤ 𝑖𝑖 ≤ 16)   (1) 
 

where, 𝑥𝑥′  represents the horizontal coordinate of the keypoint, 𝑦𝑦′  denotes the vertical 
coordinate of the keypoint, and 𝑠𝑠′ signifies the confidence level of the keypoint's coordinates. 

The extracted human skeletal keypoints are as shown in Fig. 1(a), where the 17 human 
body keypoints correspond to the keypoints numbered 0 to 16 in Table 1. 

 

(a) (g) (h) (i) (j) (k)

(b) (c) (d) (e) (f)

 
Fig. 1. The diagram of the fall process and its human skeleton, (a) displays the extracted human 
skeletal keypoints, (b)-(f) are the original images, (g)-(k) are the corresponding human skeleton 

diagrams 
 

Using the detected keypoint coordinates, human skeletal feature maps are generated 
through the keypoint connection and image drawing. First, based on the prior knowledge of 
the human skeletal structure, the detected keypoints are connected. For example, the left 
shoulder is connected to the left elbow, and the left elbow is connected to the left wrist, forming 
the skeleton structure. Second, the image drawing library is employed to draw these 
connections on a blank image, creating the corresponding skeletal feature map. Each skeletal 
connection is represented by a line, with different colors used to distinguish between the left 
and right limbs and various body parts. 

Fig. 1(b) to 1-k display five original images and their corresponding human skeletal 
graphs extracted from a fall video. After keypoints are detected in each frame of the 
preprocessed data sequence 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡0)~𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑀𝑀), a keypoint matrix 𝐾𝐾𝑀𝑀′  composed of M 
one-dimensional keypoint vectors 'H  is obtained as 

 
  𝐾𝐾𝑀𝑀′ = [𝐻𝐻0′ , … ,𝐻𝐻𝑡𝑡′ , … ,𝐻𝐻𝑀𝑀−1′ ]𝑇𝑇    (2) 
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where, 0 < 𝑡𝑡 ≤ 𝑀𝑀 − 1, 𝐾𝐾𝑀𝑀′  represents the keypoint matrix in a video stream. 
 

Table 1. Human body keypoint name 
Number Keypoint Number Keypoint 
0 Nose 9 Left wrist 
1 Left eye 10 Right wrist 
2 Right eye 11 Left hip 
3 Left ear 12 Right hip 
4 Right ear 13 Left knee 
5 Left shoulder 14 Right knee 
6 Right shoulder 15 Left ankle 
7 Left elbow 16 Right ankle 
8 Right elbow 17 Head 

 

3.2 Importance analysis 
The importance analysis of Random Forest (RF) is a method used to determine the impact 

of features on model performance. In this paper, RF is utilized to ascertain the importance of 
9 human joint features. RF evaluates feature importance by the average increase in node of 
Gini impurity brought by each feature across all trees in the forest. The more a feature 
decreases impurity, the higher its importance score. As shown in the blue bar graph in Fig. 2, 
with a threshold of I=0.02, features below this threshold, such as Ear, Eye, and Nose, are 
considered less important. Therefore, the central points of these three feature joints are 
combined to form a single feature joint named Head, ultimately consolidating into 7 human 
joint features. Subsequently, Random Forest is used again to obtain the feature importance, as 
illustrated in the orange bar graph in Fig. 2, with the corresponding 13 human keypoints being 
those numbered 5 to 17 in Table 1.  

 

Center point

 
Fig. 2. The importance of each body keypoints 
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Following the analysis of feature importance, a new keypoint matrix is generated based 
on the updated information. 
  𝐾𝐾𝑀𝑀 = [𝐻𝐻0, … ,𝐻𝐻𝑡𝑡 , … ,𝐻𝐻𝑀𝑀−1]𝑇𝑇                     (3) 
 
where, 𝐻𝐻 represents the updated one-dimensional keypoint vector, which is defined as: 
 
 𝐻𝐻 = [(𝑥𝑥0,𝑦𝑦0, 𝑠𝑠0), … , (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑠𝑠𝑖𝑖)], (0 ≤ 𝑖𝑖 ≤ 12)   (4) 
 
where, 𝑥𝑥𝑖𝑖  represents the horizontal coordinate of the keypoint, 𝑦𝑦𝑖𝑖  denotes the vertical 
coordinate of the keypoint, and 𝑠𝑠𝑖𝑖 signifies the confidence level of the keypoint's coordinates. 
 

3.3 Dual-channel feature maps 
The necessity for a dual-channel design primarily stems from the absence of skeletal and 

human keypoint information. In scenarios where skeletal data is missing, traditional single-
channel models may fail to capture comprehensive posture information. Similarly, when 
human keypoints are missing, such as in cases of partial occlusion, single-channel models can 
lose accurate comprehension of the body structure. To compensate for these information gaps, 
dense feature maps from DensePose are introduced. By employing a dual-channel structure, 
both posture and keypoint information are captured more comprehensively, thereby enhancing 
the model's ability to interpret complex scenes and ensuring more accurate and detailed human 
posture analysis. This design emphasizes not only the accuracy of keypoints but also the 
overall coherence of posture, providing richer and more precise inputs for the task of fall 
detection. 

3.3.1 Human skeletal feature maps 
Human skeletal feature maps are generated using one-dimensional keypoint vectors , and 

by cropping according to the size of the bounding box, the skeletal part of the body is extracted 
to obtain the final human skeletal feature map, as shown in Fig. 3. In this context, Fig. 3(a) 
represents the original image, and Fig. 3(b) depicts the human target detection box image. 

 

(a) (c) (d) (b) 

 

Fig. 3. Dual-channel feature maps: (a) Original figure. (b) Human bounding box. (c) Human Skeletal 
feature maps. (d) Human compact feature maps. 
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3.3.2 Human compact feature maps 
Dense feature maps are acquired from the DensePose algorithm [13] and crops them 

according to the size of the bounding box to extract the human body part, resulting in the final 
dense feature map of the human body, as shown in Fig. 3(d). 

4. Algorithm 
Since falling is a continuous process, the human posture at the current moment is 

significantly related to the posture at the previous moment. Therefore, this paper utilizes 
ConvGRU for fall prediction and employs CBAM for feature fusion on this basis, with the 
overall algorithm process depicted in Fig. 4. 

 
Fig. 4. The overall block diagram of human keypoint-guided fall detection algorithm 

 
(1) After preprocessing the video sequence, the ViTPose++ keypoint detection algorithm is 

used to detect the coordinates and confidence levels of 17 human keypoints for each 
frame, resulting in a corresponding one-dimensional keypoint vector H. After processing 
the entire video sequence, a keypoint matrix 𝐾𝐾𝑀𝑀 composed of M one-dimensional vectors 
H is obtained. 

(2) Feature importance analysis is conducted using Random Forest (RF) to filter out features 
with lower contributions to the fall prediction task and update the keypoint matrix 𝐾𝐾′𝑀𝑀. 
Subsequently, human skeletal feature maps are generated based on the keypoint matrix, 
and the human body part is cropped according to its target detection box. 

(3) The DensePose algorithm is utilized to generate dense feature maps of the human body, 
and the human body part is cropped based on its target detection box. 

(4) The obtained human skeletal feature maps and corresponding dense feature maps are used 
as dual-channel inputs for the ConvGRU-CBAM model, and the model is trained for the 
fall detection task. 

4.1 ConvGRU-CBAM 
GRU, a variant within the Recurrent Neural Network (RNN) family, addresses the issues 

of vanishing and exploding gradients common in traditional RNNs through its gating 
mechanism. It offers a simpler structure and fewer parameters than the Long Short-Term 
Memory (LSTM) network, yet maintains comparable performance. Compared to GRU, the 
Convolutional Gated Recurrent Unit (ConvGRU) neural network exhibits stronger learning 
capabilities, making it the primary model for fall prediction tasks in this paper. Additionally, 
the Attention Mechanism, widely used in machine learning and deep learning, simulates 
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human attention and memory capabilities in processing information, suitable for handling 
sequential data and achieving sequence-to-sequence mapping. To enhance feature integration, 
we employ the Convolutional Block Attention Module (CBAM), combining spatial and 
channel attention mechanisms within the ConvGRU model to boost performance. Against this 
backdrop, the model addresses the extraction of fall-related features across three dimensions: 
temporal (the relative displacement tracking in time sequences by ConvGRU), spatial (the 
relative positional relationships of human keypoints), and channel (the relationships between 
the dual input feature maps), integrating these dimensions through CBAM. Experimental 
results also demonstrate an improvement in model performance by extracting fall features 
across these three dimensions (temporal, spatial, and channel) and incorporating the CBAM 
attention mechanism. The ConvGRU-CBAM network structure is illustrated in Fig. 5. 

After obtaining the human key feature maps and dense feature maps from a video 
sequence through the ViTPose++ and DensePose algorithms, respectively, these two types of 
feature maps are used as dual-channel inputs for the ConvGRU-CBAM model. Similar to 
GRU, the ConvGRU within the model also contains a reset gate and an update gate, with the 
gating signals represented in Fig. 5 as 𝑟𝑟𝑡𝑡 and 𝑧𝑧𝑡𝑡, respectively. 

 

  𝑟𝑟𝑡𝑡 = 𝜎𝜎𝑠𝑠(𝑊𝑊𝑟𝑟(ℎ𝑡𝑡−1⨁𝑥𝑥𝑡𝑡))    (5) 
 
  𝑧𝑧𝑡𝑡 = 𝜎𝜎𝑠𝑠(𝑊𝑊𝑧𝑧(ℎ𝑡𝑡−1⨁𝑥𝑥𝑡𝑡))    (6) 
 

where 𝑊𝑊𝑟𝑟  and 𝑊𝑊𝑧𝑧  represent corresponding tensors, ℎ𝑡𝑡−1 denotes the state from the previous 
moment, and 𝑥𝑥𝑡𝑡 indicates the input at the current moment, which refers to the dual-channel 
feature map at the current time. The symbol * represents the convolution operation, and 𝜎𝜎𝑠𝑠 
signifies the sigmoid function, capable of transforming data into a range between 0 and 1, 
thereby acting as a gating signal. The reset gate 𝑟𝑟𝑡𝑡 is used to select and forget a portion of the 
fall information extracted from the past, while the update gate 𝑧𝑧𝑡𝑡 decides how much of the 
previously extracted fall-related information should be copied and passed on to the next 
moment, in order to focus on the transition of falling postures between sequences. 

·ht-1

xt

·

s

rt

·

s

Zt h̃t

1-

+

tanh

ht

·
+

Multiplication of vector elements

The sum of vectors

Vector concatenate

CBAM CBAMCBAM

ConvGRU ConvGRUConvGRU

... ...H0 HM-1Ht

0 ... 1 ... 1

ht-1

xt

ht

yt

yt

Classifier ClassifierClassifier

F'

Not Fall ... ...Fall Fall

 Rt

M
ax

Po
ol

A
vg

Po
ol

Co
nv

2d

Co
nv

2d

ᶴ +

Co
nv

2d

ᶴ 

MC MS

CAM
SAM

F

... ...

×3 Wr Wz

Whh

Wxh

 
Fig. 5. ConvGRU-CBAM model diagram 
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The reset gate and the activation function Relu are used to process the state from the 
previous moment and the dual-channel feature map input 𝑥𝑥𝑡𝑡 at the current moment, as follows, 

 
  ℎ𝑡𝑡−1′ = ℎ𝑡𝑡−1⨀𝑟𝑟𝑡𝑡    (7) 
 
  ℎ�𝑡𝑡 = 𝜎𝜎𝑡𝑡  (𝑊𝑊(ℎ𝑡𝑡−1′ ⨁𝑥𝑥𝑡𝑡))    (8) 
 
where, ⨀ denotes the Hadamard product operation. The updated value ℎ�𝑡𝑡 is obtained through 
the activation function ReLu 𝜎𝜎𝑡𝑡  . 

After passing the updated value through the update gate for selection, it is added to the 
selected output information of the hidden state from the previous moment, resulting in the 
output ℎ𝑡𝑡 and hidden layer output state 𝑦𝑦𝑡𝑡 for the current moment, which is expressed as: 

 
 𝑦𝑦𝑡𝑡 = ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡)⨀ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡⨀ℎ�𝑡𝑡    (9) 
 

After the gating mechanism of the first ConvGRU layer makes its selection, the output 
ℎ𝑡𝑡 at the current moment is used as the input for the next moment. Meanwhile, the output state 
𝑦𝑦𝑡𝑡 of the hidden layer serves as the input for the second and third ConvGRU layers. Following 
the same process of selection through the reset gate and update gate, the output 𝑦𝑦𝑡𝑡′ is then used 
as the input for the CBAM module. 

CBAM consists of the Channel Attention Module (CAM) and the Spatial Attention 
Module (SAM), as shown in the CBAM block in Fig. 5. The CAM is designed to capture the 
relationships between different channels of the feature map, adaptively weighting the feature 
matrix by calculating the importance of each channel to enhance the interaction and 
combination capabilities among different channels. In the CAM section, spatial dimension 
reduction of 𝑦𝑦𝑡𝑡′ is first achieved through average pooling, while max pooling is used to infer 
attention on finer channels. Then, channel attention feature weights 𝑀𝑀𝑐𝑐 are generated through 
two consecutive convolution operations, 

 
𝑀𝑀𝑐𝑐 = 𝜎𝜎𝑠𝑠(ℱ𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜(ℱ𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑦𝑦𝑡𝑡′)) + ℱ𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜(ℱ𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦𝑡𝑡′)))  (10) 

 
where, ℱ𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 denotes the two consecutive convolution operations. ℱ𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 represents average 
pooling, while ℱ𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  stands for max pooling. The channel attention is then obtained by 
multiplying the result with 𝑀𝑀𝑐𝑐 and the input 𝑦𝑦𝑡𝑡′ of the CAM section. represents element-wise 
multiplication. 
  𝐹𝐹 = 𝑀𝑀𝑐𝑐 ⊗ 𝑦𝑦𝑡𝑡′    (11) 
 

The Spatial Attention Module (SAM) aims to capture the relationships between different 
spatial positions within the feature map by analyzing the spatial distribution information of the 
feature map to determine the importance of different positions. This enhances the network's 
perception of spatial structures. In the SAM section, channel attention F  is processed in the 
same manner through average pooling and max pooling operations along the channel 
dimension. The outputs of these operations are then concatenated into a single feature 
descriptor, which is further processed by a convolutional layer to generate spatial attention 
feature weights sM . 
 𝑀𝑀𝑠𝑠 = 𝜎𝜎𝑠𝑠(ℱ𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜(ℱ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐹𝐹) + ℱ𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜(ℱ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐹𝐹)))) (12) 
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where, the spatial attention feature weights 𝑀𝑀𝑠𝑠 are then multiplied by the input 𝐹𝐹 of the SAM 
section to obtain the final output 𝐹𝐹 of the CBAM module, which is, 
  𝐹𝐹′ = 𝑀𝑀𝑠𝑠 ⊗ 𝐹𝐹    (13) 

where, 𝐹𝐹′represents the weights or attention levels of each element in the input sequence 
'
ty . 

After processing this weight file 𝐹𝐹′ through a classifier, the output 𝑅𝑅𝑡𝑡  of the model at the 
current moment is obtained, which is the status judgment of the current frame. A value of 0 
indicates that the person is not in a lying down state, and 1 indicates that the person is in a 
lying down state. In case that after analyzing the entire video sequence 𝐾𝐾𝑀𝑀, a rising edge result 
is obtained in [0,0, . . . , . . . ,1,1] , it is determined to be a fall. 
 

4.2 Training strategies 
In the training task of this paper, the MSE loss is used to guide the adjustment of model 

parameters during the training process, and the Adam optimizer is employed to perform 
parameter updates. The performance of the model is enhanced by minimizing the loss function. 
Through the adjustment of hyperparameters, the model is optimized, and the hyperparameters 
are shown in Table 2. 

The experiments demonstrate that setting the initial learning rate to 0.0001 enables the 
model to achieve optimal performance. Additionally, the model is set to train for 250 epochs, 
but to prevent overfitting, an early stopping strategy is employed to enhance the model's 
efficiency and generalization performance. Specifically, training is halted if there is no 
significant improvement on the validation set after 20 consecutive epochs. When validated on 
the test set, since the model outputs the status of each frame in the video sequence and 
determines whether a fall has occurred based on the entire sequence's status. 

 
Table 2. Hyperparameter during the training step 

Parameter Data 
learning rate 0.0001 

Patience 20 
Batch size 8 

Epochs 250 

 

4.3 Model deployment 
The trained model is deployed on the Azure Kinect depth camera, where human keypoints 

are extracted as inputs to the deployed model for fall detection. The specific implementation 
flow is illustrated in Fig. 6. 
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Fig. 6. Deployment flowchart 

 
(1) The Azure Kinect depth camera captures the current frame image, identifies the 13 

human body keypoints corresponding to numbers 5 to 17 in Table 1, and returns their 
coordinates to form a keypoint coordinate matrix, while also generating a human skeletal 
feature map. 

(2) The current frame image is captured from the camera, and a dense feature map of the 
human body is generated based on the DensePose algorithm. 

(3) The two types of feature maps obtained above are input into the deployed ConvGRU-
CBAM model in a dual-channel manner to determine the posture of the current frame. 

(4) The returned result is added to the output status sequence matrix, the process continues 
with capturing the next frame, repeating steps (1) and (2) until the end of the video. 

(5) After outputting a complete sequence matrix, the presence of a fall is determined 
based on whether a rising edge appears in the sequence. If a rising edge exists, it is determined 
to be a fall. If it is a straight line of zeros, there is no fall. 
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5. Experiment results 

5.1 Dataset 
Due to privacy concerns making it difficult to collect data, there are not many available 

datasets for fall detection, and they are mostly in the form of RGB videos. This paper extracts 
human skeletal keypoint datasets from these datasets using keypoint detection algorithms for 
fall detection. 

The UR Fall Detection Dataset [12] contains 30 fall sequences (Fall) and 40 daily life 
activity sequences (Adl), with each video sequence having a frame rate of 30 FPS and a 
resolution of 640×480. 

After obtaining human skeletal feature maps and dense feature maps using the UR Fall 
Detection Dataset, each original sequence in the dataset is split into several shorter sequences 
by skipping frames, with each short sequence having around 30 frames, resulting in a total of 
310 video sequences. To enhance the robustness of the model, data augmentation techniques 
such as horizontal flipping are applied, ultimately expanding the dataset to 620 video 
sequences. For model training, the sequences are divided into training, validation, and test sets 
in a 6:2:2 ratio. 

5.2 Experimental environment 
The experimental environment described in this paper features a GPU model RTX A5000 

with 24 GB of VRAM, accompanied by 14 vCPU Intel(R) Xeon(R) Gold 6330 CPU with 2 
GHz. 

5.3 Evaluation metrics 
Loss refers to the value quantified by the loss function that measures the difference 

between the model's predicted labels on the test set and the true labels on the test set. It is 
expressed as: 
 𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝑛𝑛
∑ (𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)2𝑛𝑛
𝑖𝑖=1    (14) 

 
where, 𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represents the actual label, and 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 represents the label predicted by the model. 
In the task of fall prediction, various metrics are used to evaluate the model's performance. 
The AUC (Area Under the Curve) represents the area under the ROC (Receiver Operating 
Characteristic) curve, with a value range from 0 to 1. The closer the AUC value is to 1, the 
better the model's performance. Additionally, the F1 score takes into account both the model's 
precision (P) and recall (R), and is calculated as: 
 
  𝐹𝐹1 = 2 × 𝑃𝑃×𝑅𝑅

𝑃𝑃+𝑅𝑅
    (15) 

 

  �
𝑃𝑃 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    (16) 

 
where, TN (True Negatives) refers to the number of instances correctly predicted as the 
negative class (non-fall), while TP (True Positives) refers to the number of instances correctly 
predicted as the positive class (fall). FN (False Negatives) denotes the number of instances 
where the positive class is incorrectly predicted as the negative class, and FP (False Positives) 
refers to the number of instances where the negative class is incorrectly predicted as the 
positive class. 
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5.4 Experiments results 

5.4.1 Comparing experiments 
Human skeletal graphs (Keypoints) and their corresponding dense feature maps 

(DensePose) are input into the ConvGRU model and the ConvGRU-CBAM model, 
respectively, for training in a dual-channel manner. During the training process, to prevent 
overfitting, an early stopping strategy is employed to halt training. The x-axis represents the 
number of training iterations, while the y-axis indicates the average loss per batch for each 
iteration. The loss curve initially decreases rapidly, then the rate of decrease slows down and 
gradually levels off, indicating that the model training is complete. Subsequently, the trained 
models are tested on a dual-channel test set to evaluate their performance, with the 
experimental results shown in Table 3. 

 
Table 3. Experimental results on a dual-channel test set 

Model MSE AUC F1 score 
ConvGRU 0.0030 0.9286 0.9181 

ConvGRU-CBAM 0.0041 0.9534 0.9286 
 
From the Table 3, it's clear that the ConvGRU-CBAM model shows a significant 

improvement over the ConvGRU model on the dual-channel test set, with a 2.67% increase in 
AUC and a 0.6% increase in F1 score, among other enhancements. This indicates that the 
integration of CBAM into the ConvGRU model effectively enhances the model's performance 
in fall detection tasks. 

To validate that the dual-channel input method proposed in this paper can learn more fall 
features and predict falls more accurately, this experiment also involves training the ConvGRU 
model and the ConvGRU-CBAM model using human skeletal keypoints or Densepose images 
as inputs in a single-channel manner. 

After the training is deemed complete, as indicated by the two loss curve graphs showing 
the decrease and stabilization of loss values, the trained models are then tested on a single-
channel test set to evaluate their performance. The experimental results are displayed in Table 
4. 

 
Tabel 4. Experimental results on a single-channel test set 

Model Input MSE AUC F1 score 
ConvGRU Keypoints 0.0099 0.9189 0.9118 
ConvGRU DensePose 0.0089 0.9271 0.9167 

ConvGRU-CBAM Keypoints 0.0048 0.9316 0.9217 
ConvGRU-CBAM DensePose 0.0045 0.9367 0.9242 
 
In Table 4, it's noted that under the single-channel dataset, the ConvGRU-CBAM model 

shows various degrees of improvement over the ConvGRU model. Additionally, comparing 
Tables 3 and 4, the dual-channel ConvGRU-CBAM model outperforms the single-channel 
ConvGRU-CBAM model with a 2.34% higher AUC and a 0.75% higher F1 score. This further 
validates that the performance of dual-channel input models is superior to that of single-
channel keypoints input models. 
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To verify whether the dual-channel ConvGRU-CBAM model can predict falls before they 
actually occur, a fall sequence of 55 frames was used as the input for model prediction. The 
model outputs the fall probability for each frame and visualizes these probabilities, as 
illustrated in Fig. 7. The original images corresponding to frames 38 to 55 are shown in Fig. 
8. This approach demonstrates the model's potential in recognizing the precursors to a fall, 
highlighting its utility in real-world applications where early detection can significantly impact 
response times and outcomes. 

 

 
Fig. 7. Fall predictation probability graph from ConvGRU-CBAM dual-channel model  

 
Using keypoint coordinates from the sequence in Fig. 8 as input for the GRU-CBAM 

model, and visualizing the fall probability for each frame as shown in Fig. 7, a comparison 
between the red solid line and the green dashed line reveals that the GRU-CBAM model only 
increases the fall probability and abruptly exceeds the threshold after the fall event starts 
(around frame 48), indicating it cannot effectively predict falls before they happen. Therefore, 
it suggests that using dual-channel feature maps as inputs is more suitable for the tasks of this 
paper, and ConvGRU exhibits stronger learning capabilities compared to GRU. 

In Fig. 7, the x-axis represents frames 1 to 55, while the y-axis indicates the probability 
of falling. The red solid line labeled "True" represents the actual probability of falling, the 
green dashed line labeled "GRU-CBAM Prediction" shows that the fall probability predicted 
by the single-channel GRU with CBAM. The purple dashed line labeled "Single-channel 
ConvGRU-CBAM Prediction" illustrates the fall probability predicted by the single-channel 
ConvGRU-CBAM model, and the blue dashed line labeled "Dual-channel ConvGRU-CBAM 
Prediction" depicts the fall probability predicted by the dual-channel ConvGRU-CBAM 
model. In this paper, a probability threshold of 0.5 is set. values above this threshold are 
interpreted as the occurrence of a fall event, while values below it are considered as no fall 
event. 

Comparing the blue dashed line with the red solid line in Fig. 7, it's evident that starting 
from frame 39, the fall probability predicted by the ConvGRU-CBAM model exceeds the 
threshold and continues to increase. Thus, it's analyzed that the ConvGRU-CBAM model is 
capable of predicting fall events before they actually occur, allowing for the implementation 
of early warnings and protective measures. 
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(1) 38th frame (2) 39th frame (3) 40th frame (4) 41th frame (5) 42th frame (6) 43th frame

(10) 44th frame (11) 45th frame (12) 46th frame (13) 47th frame (14) 48th frame (15) 49th frame

(16) 50th frame (17) 51th frame (18) 52th frame (19) 53th frame (20) 54th frame (21) 55th frame  
Fig. 8. The original images corresponds to frames 38 to 55 

 
Using the sequence from Fig. 8 as input for the single-channel ConvGRU-CBAM model, 

and visualizing the fall probability of each frame as shown in Fig. 7, an observation can be 
made. Comparing the red solid line with the purple dashed line in Fig. 7, the single-channel 
ConvGRU-CBAM model can predict a fall event happening by showing probabilities greater 
than the threshold starting a few frames before the fall (around frame 43), with the probability 
of falling increasing over time. However, compared to the purple dashed line (single-channel) 
and the blue dashed line (dual-channel), fluctuations occur at frames like 9, 17, and 20 in the 
single-channel model, indicating occasional variability. Together with the results in Table 4, 
it's analyzed that the performance of the single-channel ConvGRU-CBAM model is slightly 
lower. 

5.4.2 Ablation experiments 
The experiments conducted so far, utilizing feature maps as model inputs, have 

demonstrated that dual-channel input models outperform single-channel input models. The 
objectives of these experiments were to: 
(1) Verify that models with ConvGRU as the backbone have stronger learning capabilities 

than those with GRU as the backbone in the tasks of this paper. 
(2) Confirm that in fall prediction tasks, models using feature maps as inputs perform better 

than models using keypoint coordinates as inputs. 
(3) Validate that for the tasks of this paper, using RNNs as the model is more suitable than 

other deep learning networks. 
Models with LSTM, GRU, ConvLSTM and ConvGRU backbones were trained for fall 

detection using human keypoint coordinate data. Additionally, machine learning models, such 
as SVM with Radial Basis Function (RBF) kernel and polynomial kernel (Poly), random forest 
(RF) and k-nearest neighbor (KNN) were used for comparative test. This round of experiments 
also considered the fusion of channel and spatial features in fall sequences, incorporating 
CBAM, Spatial Attention Module (SAM), and Channel Attention Module (CAM) for training, 
and validating on the test set, with results shown in Table 5. 

The results from Table 5 indicate that RNNs such as LSTM and GRU as the model 
backbone perform better in fall detection compared to machine learning based models. 
Furthermore, when ConvGRU is used as the backbone, integrating both channel and spatial 



2798                                                       Yi Zheng et al.: Convolutional GRU and Attention based Fall Detection Integrating with 
Human Body Keypoints and DensePose 

attention in the CBAM module performs better than using only the CAM or SAM alone.  
 

Table 5. Results of different Backbone models combined with three attention modules 

 
To objectively understand the focus areas of the GRU-CBAM model when analyzing fall 

detection sequences, this experiment employs the technique of generating attention maps. 
These maps create an importance matrix of the same size as the keypoint matrix and are 
visualized as shown in Fig. 9. Similarly, the attention maps for daily living sequences (Adl) 
are visualized, as shown in Fig. 10. This visualization technique helps in identifying which 
regions or keypoints the model pays more attention to during the fall detection process, thereby 
providing insights into the model's decision-making process. 
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Fig. 9. Attention maps of fall sequences on the ConvGRU-CBAM model 

Backbone Attention Precision Recall F1 score AUC 
SVM (RBF) - 0.8992 0.6946 0.7837 0.8332 

SVM (POLY) - 0.8540 0.7005 0.7697 0.8287 
KNN - 0.9172 0.7964 0.8525 0.8852 
RF - 0.8766 0.8083 0.8411 0.8836 

LSTM 
CAM 0.9216 0.8510 0.8848 0.9034 
SAM 0.9500 0.8341 0.8993 0.9093 

CBAM 0.9434 0.8411 0.9061 0.9130 

GRU 
CAM 0.8952 0.8582 0.8748 0.8939 
SAM 0.8986 0.8592 0.8796 0.8941 

CBAM 0.9086 0.8717 0.8883 0.9179 

ConvLSTM 
CAM 0.9479 0.8294 0.8875 0.9246 
SAM 0.9416 0.8441 0.8902 0.9304 

CBAM 0.9472 0.8471 0.8944 0.9452 

ConvGRU 
CAM 0.9514 0.8600 0.9222 0.9355 
SAM 0.9494 0.8501 0.9152 0.9421 

CBAM 0.9504 0.8609 0.9286 0.9534 
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Observing Fig. 9, it's evident that the vertical coordinates of keypoints are deemed more 
important than their horizontal counterparts, indicating that the model focuses more on the 
vertical changes of the human body. Moreover, for the fall sequence, the importance is greater 
between frames 10 and 18 than before frame 10, suggesting that the model pays more attention 
to the frames immediately before and after the fall event occurs. 
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Fig. 10. Attention maps of Adl sequences on the ConvGRU-CBAM model 

 
As shown in Fig. 10, since no abnormal behaviors like falls occur in the Adl events, the 

importance levels of various features are relatively uniform, and the model does not focus on 
specific frames as it does in Fig. 9. 

The analysis of attention maps and feature visualization objectively demonstrates the 
model's learning degree regarding video sequences and highlights the relationship between 
frames. This insight helps in understanding how the model differentiates between normal 
activities and fall events by focusing on key moments and spatial changes indicative of a fall. 

6. Conclusions 
This paper presents a dual-channel algorithmic model for fall detection based on human 

skeletal keypoint feature maps and dense feature maps. By utilizing human keypoint data 
extracted via the ViTPose++ algorithm and combining it with dense feature maps generated 
by the DensePose algorithm within a ConvGRU network model, a novel method for fall 
detection is formed. This method not only considers information across three dimensions—
time (the temporal sequence and relative displacement tracking relationship of ConvGRU), 
space (the relative position relationship of human keypoints), and channel (the relationship 
between input feature maps)—but also effectively integrates this information through the 
CBAM module. 
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Experimental results show that the dual-channel ConvGRU-CBAM model outperforms 
the single-channel ConvGRU-CBAM model in both AUC and F1 scores, proving that dual-
channel inputs can provide richer feature information, thus enhancing the model's detection 
performance. Moreover, by integrating time and channel attention in the CBAM, the model 
can more accurately capture precursor signals of fall events, achieving effective prediction 
before the occurrence of falls. 
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