• Title/Summary/Keyword: Arithmetic Power

Search Result 189, Processing Time 0.031 seconds

Design of a 3.3V high frequency CMOS PLL with an arithmetic functionality VCO (산술 연산 구조의 VCO를 이용한 3.3V 고주파수 CMOS 주파수 합성기의 설계)

  • 한윤철;윤광섭
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.81-84
    • /
    • 2001
  • In recent years, the design of CMOS VCO at ever-higher frequencies has gained interest. This paper proposes an arithmetic functionality VCO circuit based on a differential ring oscillator for operating in high frequency. The proposed VCO architecture with half adder is able to produce two times higher frequency with my delay cell than conventional VCO produce double oscillation frequency and power dissipation is 14.59mW.

  • PDF

A Power Efficient Versatile Carry Skip Adder Architecture for the Multimode Mobile Modem (멀티모드 이동 통신 모뎀을 위한 전력 효율적 다기능 캐리스킵 가산기)

  • Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.3
    • /
    • pp.86-93
    • /
    • 2008
  • The multi-mode terminal modem which is capable of accommodating a variety of wireless communication standards needs versatile arithmetic units for processing a variety of word lengths and wide range of data rates. Since the target hardware is usually designed to meet the required highest performance, it is often wasteful in power consumption especially when low rate data processing cases. Thus, a speed and power adaptability of the arithmetic unit is a desirable feature for the wireless applications. In this paper, we propose a power efficient versatile adder architecture with carry skip logic as a basic building block constructed in hierarchical manner. The validity of the architecture is shown with respect to size, performance, and power efficiency in diverse operating modes.

High-Performance VLSI Architecture Using Distributed Arithmetic for Higher-Order FIR Filters with Complex Coefficients

  • Tsunekawa, Yoshitaka;Nozaki, Takeshi;Tayama, Norio
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.856-859
    • /
    • 2002
  • This paper proposes a high-performance VLSl architecture using distributed arithmetic for higher-order FIR filters with complex coefficients. For the purpose of realizing high sampling rate with small latency in high-order filters, we apply distributed arithmetic[1]. Moreover, in order to decrease drastically the power dissipation, the structure applying not ROM's but optimum function circuits which we have previously proposed, is utilized[2][3]. However, this structure increases in the number of adders as compared to the conventional structure applying ROM's. In order to realize a more effective method for further higher-order filter, we propose newly an implementation applying two methods which have large effects on the unit using the adders. First , we propose an implementation applying SFAs(Serial Full Adders) and SFSs(Serial Full Subtractors). Second, we propose a structure applying proposed 4-2 adders. Finally, it is shown that the proposed architecture is an effective way to realize low power dissipation and small latency while the sampling rate is kept constant for further higher-order filters with complex coefficients.

  • PDF

Implementation of 2-D DCT/IDCT VLSI based on Fully Bit-Serial Architecture (완전 비트 순차 구조에 근거한 2차원 DCT/IDCT VLSI 구현)

  • 임호근;류근장;권용무;김형곤
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.188-198
    • /
    • 1994
  • The distributed arithmetic approach has been commonly recognized as an efficient method to implement the inner-product type of computation with fixed coefficients such as DCT/IDCT. This paper presents a novel architecture and the implementation of 2-D DCT/IDCT VLSI chip based on distributed arithmetic. The main feature of the proposed architecture is a fully 2-bit serial pipeline and parallel structure with memory-based signal processing circuitry, which is efficient to the implementation of the bit-serial operation of distributed arithmetic. All modules of the proposed architecture are designed with NP-dynamic circuitry to reduce the power consumption and to increase the performance. This chip is applicable in HDTV systems working at video sampling rate up to 75 MHz.

  • PDF

An 8-b 1GS/s Fractional Folding CMOS Analog-to-Digital Converter with an Arithmetic Digital Encoding Technique

  • Lee, Seongjoo;Lee, Jangwoo;Lee, Mun-Kyo;Nah, Sun-Phil;Song, Minkyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.473-481
    • /
    • 2013
  • A fractional folding analog-to-digital converter (ADC) with a novel arithmetic digital encoding technique is discussed. In order to reduce the asymmetry errors of the boundary conditions for the conventional folding ADC, a structure using an odd number of folding blocks and fractional folding rate is proposed. To implement the fractional technique, a new arithmetic digital encoding technique composed of a memory and an adder is described. Further, the coding errors generated by device mismatching and other external factors are minimized, since an iterating offset self-calibration technique is adopted with a digital error correction logic. A prototype 8-bit 1GS/s ADC has been fabricated using an 1.2V 0.13 um 1-poly 6-metal CMOS process. The effective chip area is $2.1mm^2$(ADC core : $1.4mm^2$, calibration engine : $0.7mm^2$), and the power consumption is 88 mW. The measured SNDR is 46.22 dB at the conversion rate of 1 GS/s. Both values of INL and DNL are within 1 LSB.

A 3.3V 10BIT CURRENT-MODE FOLDING AND INTERPOLATING CMOS AJ D CONVERTER USING AN ARITHMETIC FUNCTIONALITY

  • Chung, Jin-Won;Park, Sung-Yong;Lee, Mi-Hee;Yoon, Kwang-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.949-952
    • /
    • 2000
  • A low power 10bit current-mode folding and interpolating CMOS analog to digital converter (ADC) with arithmetic folding blocks is presented in this paper. A current-mode two-level folding amplifier with a high folding rate (FR) is designed not only to prevent ADC from increasing a FR excessively, but also to perform a high resolution at a single power supply of 3.3V The proposed ADC is implemented by a 0.6${\mu}$m n-well CMOS single poly/double metal process. The simulation result shows a differential nonlinearity (DNL) of ${\pm}$0.5LSB, an integral nonlinearity (INL) of ${\pm}$1.0LSB

  • PDF

A Technical Trend on Automatic Vacuum Capacitor Switch with Modified Digital Filter Design (디지털 필터 설계를 이용한 자동 진공 콘덴서 스위치의 기술 동향)

  • Oh, Gi-Soo;Chang, Young-Ho;Yun, Ju-Ho;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1978-1979
    • /
    • 2007
  • In this paper, the authors introduce a high-speed microprocessor based on automatic vacuum capacitor switch with a modified digital filter design using distributed arithmetic. The automation trends particularly the automatic vacuum capacitor switch has helped ameliorate the power factor essentials and automatically triggered to close when the line current exceeds rated value. Microprocessor relays use digital filters to extract only the fundamental and attenuate harmonics. To provide optimum speed characteristics a distributed arithmetic based filter design in the microprocessor controller which not only enhances filtering speed but additionally enables lower power consumption at the cost of area has been introduced. The result is a unified description that describes a digital filter structure down to bit level.

  • PDF

The Construction of DAS System for Supervising of Power System Simulator (시뮬레이터 감시를 위한 DAS 시스템의 구축)

  • Choi, Sang-Bong;Moon, Young-Whan;Sung, Kee-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.922-924
    • /
    • 1996
  • This paper presents the construction of Digital DAS system for supervising of power system simulator (KERISIM) which is developed in KERI. This system is composed of input transducer, input conditioner and digital supervisor. In order to watch P,Q,V,I, Power Factor and RMS in KERISIM successively, Digital arithmetic algorithm is accomplished to calculate Real/Reactive power from voltage/current data which is transferred by secondary part of CT/PT in simulator.

  • PDF

Low-power Radix-4 FFT Structure for OFDM using Distributed Arithmetic (Distributed Arithmetic을 사용한 OFDM용 저전력 Radix-4 FFT 구조)

  • Jang Young-Beom;Lee Won-Sang;Kim Do-Han;Kim Bee-Chul;Hur Eun-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.1 s.307
    • /
    • pp.101-108
    • /
    • 2006
  • In this paper, an efficient butterfly structure for Radix-4 FFT algorithm using DA(Distributed Arithmetic) is proposed. It is shown that DA can be efficiently used in twiddle factor calculation of the Radix-4 FFT algorithm. The Verilog-HDL coding results for the proposed DA butterfly structure show $61.02\%$ cell area reduction comparison with those of the conventional multiplier butterfly structure. furthermore, the 64-point Radix-4 pipeline structure using the proposed butterfly and delay commutators is compared with other conventional structures. Implementation coding results show $46.1\%$ cell area reduction. Due to its efficient processing scheme, the proposed FFT structure can be widely used in large size of FFT like OFDM Modem.

Low-power Horizontal DA Filter Structure Using Radix-16 Modified Booth Algorithm (Radix-16 Modified Booth 알고리즘을 이용한 저전력 Horizontal DA 필터 구조)

  • Shin, Ji-Hye;Jang, Young-Beom
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.31-38
    • /
    • 2010
  • In tins paper, a new DA(Distributed Arithmetic) tilter implementation technique has been proposed. Contrary to vertical directional calculation of input sample bit format in the conventional DA implementation technique, proposed implementation technique utilizes horizontal directional calculation of input sample bit format. Since proposed technique calculates in horizontal direction, it does not need ROM and utilizes the Modified Booth algorithm. Furthermore proposed technique can be applied to implement the variable coefficients filters in addition to the fixed coefficients filters. Using conventional and proposed techniques, a 20 tap filter is implemented by Verilog-HDL coding. Through Synopsis synthesis tool, it has been shown that 41.6% area reduction can be achieved.