• Title/Summary/Keyword: Arduino sensor

Search Result 265, Processing Time 0.03 seconds

A Study on the Smart Farm Characteristics Using Multiple Sensors (다중 센서를 이용한 스마트팜 특성 연구)

  • Kwon, Oh-Hoon;Kang, In-chang;Min, Dong-Sun;Im, He-Beom;Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.719-724
    • /
    • 2021
  • In this paper, we studied properties of smart farms that can automatically control not only the temperature and humidity but also the illumination to improve plant productivity. The smart farm was designed to allow the controllers to operate through Arduino by receiving input values from each sensor. In addition, to maximize the convenience of smart farm, the Bluetooth communication module is used to control the smart phone. The study confirmed that the automation function of smart farms can create an environment suitable for plants to grow.

Development of Smart Healthcare Scheduling Monitoring System for Elderly Health Care

  • Cho, Sooyong;Lee, Sang Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.51-59
    • /
    • 2018
  • Health care has attracted a lot of attention, recently due to an increase in life expectancy and interest in health. Various biometric data of the user are collected by using the air pressure sensor, gyro sensor, acceleration sensor, and heart rate sensor to perform the Smart Health Care Activity Tracker function. Basically, smartphone application is made and tested for biometric data collection, but the Arduino platform and bio-signal measurement sensor are used to confirm the accuracy of the measured value of the smartphone. Use the Google Maps API to set user goals and provide guidance on the location of the user and the points the user wants. Also, the basic configuration of the main UI is composed of the screen of the camera, and it is possible for the user to confirm the forward while using the application, so that accident prevention is possible.

Fire Detection Method Using IoT and Wireless Sensor Network

  • Park, Jung Kyu;Roh, Young Hwa;Nam, Ki hun;Seo, Hyung Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.131-136
    • /
    • 2019
  • A wireless sensor network (WSN) consists of several sensor nodes and usually one base station. In this paper, we propose a method to monitor topics using a wireless sensor network. Fire threatens people, animals, and plants, and it takes a lot of recovery time when a fire occurs. For this reason, it is necessary to use a fire monitoring system that is easy to configure and fast to avoid fire. In this paper, we propose a fast and easily reliable fire detection system using WSN. The wireless node of the WSN measures the temperature and brightness around the node. The measured information is transferred to the workstation and to the base station. The workstation analyzes current and historical data records to monitor the fire and notify the manager.

Comparison of Step Counting Methods according to the Internal Material Molding Methods for the Module of a Smart Shoe

  • Jang, Si-Woong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.90-99
    • /
    • 2021
  • Recently, studies on wearable devices in ubiquitous computing environments have increased and the technology collecting user's activities to provide services has received great attention. We have compared the step counting methods according to sensor molding methods in case of counting steps by using the piezoelectric sensor. We have classified the cases which could result from the course of molding the internal module of a smart shoe as follows: (i) the module is unmolded, (ii) molded but only to the extent that a sensor is fixed or (iii) molded to the extent that a sensor is not moved. Moreover, we have made comparison to verify which algorithm should be used to increase the accuracy of counting steps by the respective cases. Based on the comparison result, we have confirmed that the accuracy of counting steps is higher when using gradient value rather than when using threshold value. In the case of no molding and small molding under the condition of using gradient value, it was turned out to be 100% accuracy for step counting.

Implementation of Gait Pattern Monitoring System Using FSR(Force Sensitive Resistor) Sensor (압력 센서를 이용한 보행 패턴 모니터링 시스템 구현)

  • Kim, Kiwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.56-60
    • /
    • 2021
  • Recently, technologies for internet of things have been rapidly advanced with development of network. Also interest in smart healthcare that informs about motion information of users has been growing. In this paper, a system that is monitoring the weight on both feet by using aduino and FSR(Force Sensitive Resistor) Sensor is implemented. A 4-channel sensor driver module was implemented to measure a more accurate weight value. It is monitoring the weight on both feet by the using an application for either your PC or mobile device. Mobile applications can contribute to reducing human damage by sending messages along with location in emergency situations, such as injuries caused by falls during outdoor activities.

A Study on Change of Pleats Shape and Fabric Properties: Interactive Shape-folding E-textile with Arduino

  • Lee, Euna;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.18 no.3
    • /
    • pp.134-147
    • /
    • 2014
  • The aim of this study is to create smart wear that brings out the perspective person's individuality and creativity wearing these garments through various interactions. It is intended to build a prototype for a "Shape-folding Dress", which is length-adjustable skirt that responses with the environment of the wearer. In this process, four basic physical properties can be identified with fabric samples selected which are relatively stiff, including fusible interlining, organdy, silk, and ramie. In addition, two types of folding pattern specimens, "Basic Pattern" and "Diamond Pattern", and heat-steam were used to make the specimens so that the correlation could be calculated by recovery rate among flexing, stiffness and tensile properties. As a result, compared to other fabrics, the silk showed low stress to repeat folding and unfolding process, and its recovery rate of elongation deformation was stable without being affected by the different folding types and twice repeated process. In this study, forming a circuit using an Arduino, illuminance sensor, motors, and pulley, the prototype was created with a silk fabric.

Evaluation of Temperature and Humidity Maintenance Performance with Vegetation Blocks Incorporating Waste Glass Beads Using Arduino Sensor (아두이노 센서를 활용한 폐유리 발포비드 혼입 식생블록의 온습도 유지성능 평가)

  • Gil, Min-Woo;Kim, Gyu-Yong;Pyeon, Su-Jeong;Choi, Byung-Cheol;Kim, Moon-Kyu;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.125-126
    • /
    • 2023
  • Recently, heat island and dry island phenomena occur frequently due to land surface development and excessive energy consumption in urban areas. As a result, the surface temperature of the building and the entire temperature of its surroundings are increased, and as a result, the durability of the building is rapidly deteriorated. In order to suppress these causes, a method of maintaining the temperature of road heating wires was implemented as a temporary measure, but this did not predict climate change. Therefore, this study is a method to measure the compressive strength, density, and thermal conductivity of lightweight concrete using waste glass foam beads. After fabricating a simple chamber, the temperature and humidity of the inside and outside were measured with an Arduino device in consideration of external factors. Therefore, if waste glass foam beads made through proper mixing are constructed in the urban center, the quality of the urban can be improved.

  • PDF

Implementation of Home Security System using a Mobile App (모바일 앱을 이용한 홈 시큐리티 시스템 구현)

  • Kwon, Young-Il;Jeong, Sam-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.4
    • /
    • pp.91-96
    • /
    • 2017
  • In this paper, we aim to respond efficiently to crime by using Arduino and smartphone apps in response to increasing number of house-breaking crimes. It receives the signal of the sensor installed in the house and connects it with the app of the smartphone. To use the app, you can download the app from the user's smartphone, launch the app, and operate the operation outside the home, not only inside the house, by linking the executed app. Among the sensors installed in the house, the movement detection sensor is used to enhance the security, and the gas leakage sensor and the flame detection sensor can be used to easily detect the risk of fire and to prevent the fire early. Security is further enhanced by the ability to remotely control the front door with a smartphone. After that, various sensors can be added and it can be developed as a WiFi module in addition to the Bluetooth module.

Development and Application of Arduino Based Multi-sensors System for Agricultural Environmental Information Collection - A Case of Hog Farm in Yeoju, Gyeonggi - (농업환경정보 수집을 위한 아두이노 기반 멀티 센서 시스템 개발 및 적용 - 경기 여주시 소재 양돈농가를 사례로 -)

  • Han, Jung-Heon;Park, Jong-Jun
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.2
    • /
    • pp.15-21
    • /
    • 2019
  • The agricultural environment is changing and becoming more advanced due to the influence of the 4th Industrial Revolution. From the basic plan of Rural Informatics to the current level of 2nd generation smart farms aimed at improving productivity using Big data, cloud network and more IoT technology. We are continuing to provide support and research and development. However, many problems remain to be solved in order to supply and settle smart farms in Korea. The purpose of this study is to provide a method of collecting and sharing data on farming environment and to help improve the income and productivity of farmers based on collected data. In the case of hog farm, the multiple sensors for environmental data like temperature, humidity and gases and the network environment for connecting the internet were established. The environment sensor was made using the ESP8266 Node MCU board as micro-controller, DHT22 sensor for temperature and humidity, and MQ series sensors for various gases in the hog pens. The network sensor was applied experimentally for one month and the environmental data of the hog farm was stored on a web database. This study is expected to raise the importance of collecting and managing the agricultural and environmental data, for the next generation farmers to understand the smart farm more easily and to try it by themselves.

A Comparison of the Construction for IoT System in Smart Clothing

  • Ko, Jooyoung;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.2 no.4
    • /
    • pp.327-332
    • /
    • 2015
  • Recently, as microcomputers and sensors have been miniaturized due to dropdown of their market rates, this lead to a favorable environment for implementing the Internet of Things. Smart clothing refers to a system which can be wearable or portable, and allows people to communicate or conduct sensing. Applying the Internet of things, the role of the server computer is to receive and process data obtained from the sensor. An ordinary PC can act as a server but during the implementation of IoT, a PC has limited application due to a large size and the inconvenient portability. This study proposes a model that allows a variety of functions while implementation with the server from the sensing using the Arduino and Raspberry Pi. If we apply this proposed model, everyone can easily and inexpensively experience mobile IoT system.