• 제목/요약/키워드: Arbitrary Lagrangian Eulerian Finite Element

검색결과 54건 처리시간 0.027초

곡면금형을 통한 축대창 열간 압출의 ALE 유한요소 해석 (Finite Element Analysis of Axisymmetric Hot Extrusion Through Continuous Dies Using the Arbitrary Lagrangian-Eulerian Description)

  • 강연식;양동열
    • 소성∙가공
    • /
    • 제4권1호
    • /
    • pp.69-78
    • /
    • 1995
  • The arbitrary Lagrangian-Eulerian(ALE) finite element analysis is applied to the axisymmetric hot extrusion through continuous dies. In order to simulate hot forming problems, an ALE scheme for temperature analysis is proposed. The computed results are compared with experimental results as with those by pure Lagrangian method. In the present study mesh control is accomplished by the use of isoparametric mapping of quadrilaterals.

  • PDF

ALE 묘사에 근거한 강-점소성 유한요소 수식화와 축대칭 평금형 압출에의 적용 (An ALE Finite Element Formulation for Rigid-Viscoplatic Materials and Its Application to Axisymmetric Extrusion through Square Dies)

  • 강연식;양동열
    • 소성∙가공
    • /
    • 제3권2호
    • /
    • pp.156-166
    • /
    • 1994
  • An arbitrary Lagrangian-Eulerian (ALE) finite element method has been developed. The finite element formation is derived and implemented for rigid-viscoplastic materials. The developed computer program is applied to the analysis of axisymmetric square die extrusion, which has many difficulties with updated Lagrangian approach. The results are compared with those from updated Largrangian approach. The results are compared with those from updated Lagrangian finite element program. Updating scheme of time dependent variables and mesh control are also examined.

  • PDF

Finite Element Formulation using Arbitrary Lagrangian Eulerian Method for Saturated Porous Media

  • Park, Taehyo;Jung, Sochan
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.375-382
    • /
    • 2003
  • Porous media consist of physically and chemically different materials and have an extremely complicated behavior due to the different material properties of each of its constituents. In addition, the internal structure of porous media has generally a complex geometry that makes the description of its mechanical behavior quite complex. Thus, in order to describe and clarify the deformation behavior of porous media, constitutive models for deformation of porous media coupling several effects such as flow of fluids of thermodynamical change need to be developed in frame of Arbitrary Lagrangian Eulerian (ALE) description. The aim of ALE formulations is to maximize the advantages of Lagrangian and Eulerian methods, and to minimize the disadvantages. Therefore, this method is appropriate for the analysis of porous media that are considered for the behavior of solids and fluids. First of all, governing equations for saturated porous media based on ALE description are derived. Then, weak forms of these equations are obtained in order to implement numerical method using finite element method. Finally, Petrov-Galerkin method Is applied to develop finite element formulation.

  • PDF

고체추진로켓 내부에서 발생하는 동적 파괴 현상과 유체-고체 상호작용의 시뮬레이션 - Part 1 (이론적 측면) (Simulation of dynamic fracture and fluid-structure interaction in solid propellant rockets : Part 1 (theoretical aspects))

  • 황찬규
    • 한국산학기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.286-290
    • /
    • 2008
  • 본 논문은 고체 추진 로켓의 연소 중에 발생하는 고체추진체의 동적 파괴 현상 및 유체-구조 상호작용을 시뮬레이션 하기 위한 프로그램 개발에 대한 것이다. 개발된 프로그램은 구조해석을 위한 CVFE (cohesive Volumetric Finite Element) 방법과 외재적 ALE (Arbitrary Lagrangian Eulerian) 방법을 응용한 유한요소법 코드와 유동해석을 위한 외재적 비정렬 유한 체적 오일러 코드(Explicit Unstructured Finite Volume Euler code)로 구성된다. 개발된 프로그램의 또 다른 중요한 특징은 균열의 전파와 고체추진체의 변형에 따라 생기는 추진제 형상의 대변형이 발생할 때, 새로 생긴 유체 영역에서의 격자의 확장과 복구되는 능력이다.

Finite element procedure of initial shape determination for hyperelasticity

  • Yamada, Takahiro
    • Structural Engineering and Mechanics
    • /
    • 제6권2호
    • /
    • pp.173-183
    • /
    • 1998
  • In the shape design of flexible structures, it is useful to predict the initial shape from the desirable large deformed shapes under some loading conditions. In this paper, we present a numerical procedure of an initial shape determination problem for hyperelastic materials which enables us to calculate an initial shape corresponding to the prescribed deformed shape and boundary condition. The present procedure is based on an Arbitrary Lagrangian-Eulerian (ALE) finite element method for hyperelasticity, in which arbitrary change of shapes in both the initial and deformed states can be treated by considering the variation of geometric mappings in the equilibrium equation. Then the determination problem of the initial shape can be formulated as a nonlinear problem to solve the unknown initial shape for the specified deformed shape that satisfies the equilibrium equation. The present approach can be implemented easily to the finite element method by employing the isoparametric hypothesis. Some basic numerical results are also given to characterize the present procedure.

S-ALE를 이용한 다공질 매체 거동의 유한요소해석 (Finite Element Analysis for Behavior of Porous Media Using the S-ALE Method)

  • 박대효;탁문호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.381-388
    • /
    • 2006
  • A porous medium is composed of solids, fluids, and gas which have different physical and chemical properties. In addition, these constituents have a relative velocity between each other. So far, in order to analyze porous media using finite element method, Lagrangian or Eulerian method has been used. However, the numerical analyses for porous media have a defect that the methods do not describe the movements of constituents. In this paper, numerical analysis for unsaturated porous media was performed in frame of ALE method which has advantages of Lagrangian and Eulerian. Namely, the Lagrangian description was used in solid phase, and the Eulerian description was used in fluid or gas phase in a porous medium Then the relationship between each other was controlled by the convective term in ALE method. Finally, the numerical results of ALE were compared with tile results of Lagrangian analysis.

  • PDF

강-점소성 ALE 유한요소 수식화에 근거한 사각형 형재의 평금형 등온 압출에 대한 3차원 해석 (A Three-Dimensional Rigid-Viscoplastic Finite Element Analysis of isothermal Square Die Extrusion of a Square Section Based on ALE Description)

  • 강연식;양동열
    • 소성∙가공
    • /
    • 제5권1호
    • /
    • pp.55-60
    • /
    • 1996
  • In the finite element analysis of metal forming processes the updated Lagrangian approach has been widely and effectively used to simulate the non-steady state problems. however some difficulties have arisen from abrupt flow change as in extrusion through square dies. In the present work an ALE(arbitrary Lagrangian-Euleria) finite element formulation for deforma-tion analysis are presented fro rigid-viscoplastic materials. The developed finite element program is applied to the isothermal analysis of square die extrusion of a square section. The computational results are compared with those by the updated Lagrangian finite element analysis.

  • PDF

An ALE Finite Element Method for Baffled Fuel Container in Yawing Motion

  • Cho, Jin-Rae;Lee, Hong-Woo;Yoo, Wan-Suk;Kim, Min-Jeong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.460-470
    • /
    • 2004
  • A computational analysis of engineering problems with moving domain or/and boundary according to either Lagrangian or Eulerian approach may encounter inherent numerical difficulties, the extreme mesh distortion in the former and the material boundary indistinctness in the latter. In order to overcome such defects in classical numerical approaches, the ALE(arbitrary Lagrangian Eulerian) method is widely being adopted in which the finite element mesh moves with arbitrary velocity. This paper is concerned with the ALE finite element formulation, aiming at the dynamic response analysis of baffled fuel-storage container in yawing motion, for which the coupled time integration scheme, the remeshing and smoothing algorithm and the mesh velocity determination are addressed. Numerical simulation illustrating theoretical works is also presented.

피스톤에 의해 유입되는 유동에 대한 유한요소법을 이용한 수치해석 (Numerical Analysis for the Piston-Driven Intake Flows using the Finite Element Method)

  • 최종욱;박찬국
    • 한국전산유체공학회지
    • /
    • 제4권2호
    • /
    • pp.39-46
    • /
    • 1999
  • The FVM(Finite Volume Method) have been used mainly for the flow analyses in the piston-cylinder. The objective of the present study is to analyze numerically the piston-driven intake flows using the FEM(Finite Element Method). The FEM algorithm used in this study is 4-step time-splitting method which requires much less execution time and computer storage than the velocity-pressure integrated method and the penalty method. And the explicit Lax-Wendroff scheme is applied to nonlinear convective term in the momentum equations to prevent checkerboard pressure oscillations. Also, the ALE(arbitrary Lagrangian Eulerian) method is adopted for the moving grids. The calculated results show good agreement in comparison with those by the FVM and the experimental results by the LDA.

  • PDF

케이블-막구조물의 요소이동(slip)에 관한 연구 (A Study on the Slipping Problem for Cable-Membrane Structures)

  • 김재열;강주원;박상민
    • 한국공간구조학회논문집
    • /
    • 제8권5호
    • /
    • pp.95-105
    • /
    • 2008
  • 본 논문에서는 케이블-막구조의 요소이동을 고려한 해석 기법을 제시하기 위하여 초기평형형상해석 및 응력해석과 요소이동성을 고려한 해석으로 구분하여 연구함으로서 이론적인 접근을 통해 요소이동성을 평가하였으며, 요소이동을 고려한 해석으로 ALE(Arbitrary Lagrangian-Eulerian) 유한요소법을 이용하여 작성된 알고리즘을 제시하여 다양한 예제의 검증을 통해 제안방법을 평가하였다.

  • PDF