• Title/Summary/Keyword: Aqueous solution model

Search Result 369, Processing Time 0.024 seconds

Enhancement of Manganese Removal Ability from Water Phase Using Biochar of Prinus densiflora Bark (소나무 수피 바이오차를 이용한 수중에서 망간의 제거능력 향상)

  • Kim, Min-Ji;Choi, Jung Hoon;Choi, Tae Ryeong;Choi, Suk Soon;Ha, Jeong Hyub;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.526-531
    • /
    • 2020
  • Manganese ions contained in water phase are acting as a toxic substance in the human body and also known to affect the nervous system. In particular, effective treatment technology is required since manganese removal is difficult due to its high solubility in a wide pH range. In this study, Prinus densiflora bark was chemically modified with hydrogen peroxide, and the modified adsorbent was used for removing manganese ions in an aqueous solution. The modified adsorbent showed high removal capacity of 82.1 and 56.2%, respectively, at conditions of 5 and 10 mg/L manganese ions. Also, the adsorption isotherm from the data was applied to the theoretical equation. As a result, the adsorption behavior of manganese ions was better suited to the Langmuir than Freundlich model, and it was also found from kinematics that the pseudo-second order kinetic model was more suitable. In addition, the changes of Gibbs free energy indicated that the adsorption reaction became more spontaneously with increasing temperature. Consequently, these experimental results may be used as a water treatment technology which can efficiently treat manganese ions contained in water.

Preparation of PVA/Graphene Oxide/Fe3O4 Magnetic Microgels as an Effective Adsorbent for Dye Removal (폴리바이닐알코올/그래핀 옥사이드/산화철 자성 마이크로겔을 이용한 염료 제거)

  • Go, Seongmoon;Kim, Keunseong;Wi, Eunsol;Park, Rae-Su;Jung, Hong-Ryun;Yun, Changhun;Chang, Mincheol
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.98-105
    • /
    • 2022
  • In this study, polyvinyl alcohol (PVA)/graphene oxide (GO)/iron oxide (Fe3O4) magnetic microgels were prepared using a microfluidic approach and the dye adsorption capacity of the microgels was confirmed. The adsorption capacity (qe) of the gels was evaluated by varying the dye concentration, pH, and contact time with the microgels. The dyes used in this work were methylene blue (MB), crystal violet (CV), and malachite green (MG), and microgels showed the highest adsorption capacity (191.1 mg/g) in methylene blue. The microgels exhibited the highest adsorption capacity in the dye aqueous solution at pH 10 due to the presence of atomic nitrogen ions (N+) on the dye molecules. The adsorption isotherm studies revealed that the Langmuir isotherm is the best fit isotherm model for the dye adsorption on the microgels, indicative of monolayer adsorption. The kinetic analysis exhibited that the pseudo-second order model fits better than the pseudo-first order model, confirming that the adsorption process is chemisorption. In addition, the magnetic microgels showed good reusability and recovery efficiency. It was confirmed that the adsorption capacity of the gels maintains more than 70% of the initial capacity after 5 times of cycle experiments.

Ultrasonic Degradation of Endocrine Disrupting Compounds in Seawater and Brackish Water

  • Park, So-Young;Park, Jong-Sung;Lee, Ha-Yoon;Heo, Ji-Yong;Yoon, Yeo-Min;Choi, Kyung-Ho;Her, Nam-Guk
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.137-148
    • /
    • 2011
  • In this study, a series of experiments was conducted on the relative degradation of commonly known endocrine-disrupting compounds such as bisphenol A (BPA) and $17{\alpha}$-ethinyl estradiol (EE2) in a single-component aqueous solution using 28 and 580 kHz ultrasonic reactors. The experiments were conducted with three different types of model water: deionized water (DI), synthetic brackish water (SBW), and synthetic seawater (SSW) at pH 4, 7.5, and 11 in the presence of inert glass beads and humic acids. Significantly higher sonochemical degradation (93-97% for BPA) occurred at 580 kHz than at 28 kHz (43-61% for BPA), regardless of water type. A slightly higher degradation was observed for EE2 compared to that of BPA. The degradation rate of BPA and EE2 in DI water, SBW, and SSW after 30 min of ultrasound irradiation at 580 kHz increased slightly with the increase in pH from 4 (0.073-0.091 $min^{-1}$ for BPA and 0.081-0.094 $min^{-1}$ for EE2) to 7.5 (0.087-0.114 $min^{-1}$ for BPA and 0.092-0.124 $min^{-1}$ for EE2). In contrast, significant degradation was observed at pH 11 (0.149-0.221 $min^{-1}$ for BPA and 0.147-0.228 $min^{-1}$ for EE2). For the given frequencies of 28 and 580 kHz, the degradation rate increased in the presence of glass beads (0.1 mm and 25 g) for both BPA and EE2: 0.018-0.107 $min^{-1}$ without beads and 0.052-0.142 $min^{-1}$ with beads for BPA; 0.021-0.111 $min^{-1}$ without beads and 0.054-0.136 $min^{-1}$ with beads for EE2. A slight increase in degradation of both BPA and EE2 was found as the concentration of dissolved organic carbon (DOC, humic acids) increased in both SBW and SSW: 0.107-0.115 $min^{-1}$ in SBW and 0.087-0.101 $min^{-1}$ in SSW for BPA; 0.111-0.111 $min^{-1}$ in SWB and 0.092-0.105 $min^{-1}$ in SSW for EE2. After 30 min of sonicating the humic acid solution, DOC removal varied depending on the water type: 27% (3 mg $L^{-1}$) and 7% (10 mg $L^{-1}$) in SBW and 7% (3 mg $L^{-1}$) and 4% (10 mg $L^{-1}$) in SSW.

New Synthesis of the Ternary Type Bi2WO6-GO-TiO2 Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-catalytic Effect (개선된 광촉매 효과를 위한 수열법에 의한 삼원계 Bi2WO6-GO-TiO2 나노복합체의 쉬운 합성 방법)

  • Nguyen, Dinh Cung Tien;Cho, Kwang Youn;Oh, Won-Chun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.705-713
    • /
    • 2017
  • A novel material, $Bi_2WO_6-GO-TiO_2$ composite, was successfully synthesized using a facile hydrothermal method. During the hydrothermal reaction, the loading of $Bi_2WO_6$ and $TiO_2$ nanoparticles onto graphene sheets was achieved. The obtained $Bi_2WO_{6-GO-TiO2}$ composite photo-catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis-DRS), and X-ray photoelectron spectroscopy (XPS). The $Bi_2WO_6$ nanoparticle showed an irregular dark-square block nanoplate shape, while $TiO_2$ nanoparticles covered the surface of the graphene sheets with a quantum dot size. The degradation of rhodamine B (RhB), methylene blue trihydrate (MB), and reactive black B (RBB) dyes in an aqueous solution with different initial amount of catalysts was observed by UV spectrophotometry after measuring the decrease in the concentration. As a result, the $Bi_2WO_6-GO-TiO_2$ composite showed good decolorization activity with MB solution under visible light. The $Bi_2WO_6-GO-TiO_2$ composite is expected to become a new potential material for decolorization activity. Photocatalytic reactions with different photocatalysts were explained by the Langmuir-Hinshelwood model and a band theory.

Influence and Application of an External Variable Magnetic Field on the Aqueous HCl Solution Behavior: Experimental Study and Modelling Using the Taguchi Method (염산 수용액 거동에 대한 가변 외부 자기장의 적용과 영향: 실험 연구 및 Taguchi 법을 이용한 모델링)

  • Hashemizadeh, Abbas;Ameri, Mohammad Javad;Aminshahidy, Babak;Gholizadeh, Mostafa
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.215-224
    • /
    • 2018
  • Influences of the magnetic field on 5, 10 and 15 wt% (1.5, 3 and 4.5 M) HCl solution behaviour, which has widespread applications in petroleum well acidizing, were investigated in various conditions. Differences in the pH of magnetized hydrochloric acid compared to that of normal hydrochloric acid were measured. Taguchi design of experimental (DoE) method were used to model effects of the magnetic field intensity, concentration, velocity and temperature of acid in addition to the elapsed time. The experimental results showed that the magnetic field decreases [$H^+$] concentration of hydrochloric acid up to 42% after magnetization. Increasing the magnetic field intensity (with 28% contribution), concentration (with 42% contribution), and velocity of acid increases the effect of magnetic treatment. The results also demonstrated that the acid magnetization was-not influenced by the fluid velocity and heating. It was also displayed that the acid preserves its magnetic memory during time. The optimum combination of factors with respect to the highest change of [$H^+$] concentration was obtained as an acid concentration of 10% and an applied magnetic field of 4,300 Gauss. Due to the reduction of HCl reaction rate under the magnetization process, it can be proposed that the magnetized HCl is a cost effective and reliable alternative retarder in the matrix acidizing of hydrocarbon (crude oil and natural gas) wells.

Comparative Study on the Estimation of CO2 absorption Equilibrium in Methanol using PC-SAFT equation of state and Two-model approach. (메탄올의 이산화탄소 흡수평형 추산에 대한 PC-SAFT모델식과 Two-model approach 모델식의 비교연구)

  • Noh, Jaehyun;Park, Hoey Kyung;Kim, Dongsun;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.136-152
    • /
    • 2017
  • The thermodynamic models, PC-SAFT (Perturbed-Chain Statistical Associated Fluid Theory) state equation and the Two-model approach liquid activity coefficient model NRTL (Non Random Two Liquid) + Henry + Peng-Robinson, for modeling the Rectisol process using methanol aqueous solution as the $CO_2$ removal solvent were compared. In addition, to determine the new binary interaction parameters of the PC-SAFT state equations and the Henry's constant of the two-model approach, absorption equilibrium experiments between carbon dioxide and methanol at 273.25K and 262.35K were carried out and regression analysis was performed. The accuracy of the newly determined parameters was verified through the regression results of the experimental data. These model equations and validated parameters were used to model the carbon dioxide removal process. In the case of using the two-model approach, the methanol solvent flow rate required to remove 99.00% of $CO_2$ was estimated to be approximately 43.72% higher, the cooling water consumption in the distillation tower was 39.22% higher, and the steam consumption was 43.09% higher than that using PC-SAFT EOS. In conclusion, the Rectisol process operating under high pressure was designed to be larger than that using the PC-SAFT state equation when modeled using the liquid activity coefficient model equation with Henry's relation. For this reason, if the quantity of low-solubility gas components dissolved in a liquid at a constant temperature is proportional to the partial pressure of the gas phase, the carbon dioxide with high solubility in methanol does not predict the absorption characteristics between methanol and carbon dioxide.

Comparison of Steel Slag and Activated Carbon for Phosphate Removal from Aqueous Solution by Adsorption (폐수 내 인 흡착 제거를 위한 제강슬래그와 활성탄 비교)

  • Lee, Seung-Han;Kim, Chang-Kyu;Park, Jung-Geun;Choi, Dong-Kwang;Ahn, Johng-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.303-309
    • /
    • 2017
  • This study investigated the potential use of steel slag (SS) (0.5~2.0 g/200 mL) for the removal of phosphate from wastewater compared with activated carbon (AC) (3.0~6.0 g/200 mL). The adsorption equilibrium data were best represented by Langmuir isotherm and its calculated maximum adsorption capacity was 91 mg/g for SS, 27 mg/g for AC. The adsorption kinetics was found to follow the pseudo-second order kinetics model and its rate constant was $0.0232{\sim}0.1357g/mg{\cdot}min$ for SS, $0.0247{\sim}0.1221g/mg{\cdot}min$ for AC. The overall uptake for the SS and AC was maximum at pH 2. Therefore, it can be concluded that steel slag could play an effective role in reducing phosphate concentration compared with activated carbon.

Adsorption Characteristics of Copper using Biochar Derived from Exhausted Coffee Residue (커피찌꺼기 biochar를 활용한 구리의 흡착특성)

  • Park, Jong-Hwan;Kim, Hong-Chul;Kim, Yeong-Jin;Kim, Seong-Heon;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.22-28
    • /
    • 2017
  • BACKGROUND: There is very limited knowledge of the effects of biochar derived from exhausted coffee residue on metal adsorption processes. Furthermore, only limited information is available on the adsorption mechanism of copper. The aim of this study was to evaluate the absorption behaviors of copper by biochar derived from exhausted coffee residue. METHODS AND RESULTS: Biochars produced by pyrolysis of exhausted coffee residue at $300^{\circ}C$(CB300) and $600^{\circ}C$(CB600) were characterized and investigated as adsorbents for the removal of copper from aqueous solution. The results indicated that the adsorption equilibrium was achieved around 2 h and the pseudo-second-order kinetic model fit the data better than the pseudo-first-order kinetic model. The maximum Cu adsorption capacities of CB600 by Freundlich and Langmuir isotherms were higher than those of CB300. The adsorption data were well described by a Langmuir isotherm compare to Freundlich isotherm. CONCLUSION: Our results suggest that exhausted coffee residue can be used as feedstock materials to produce high quality biochar, which could be used as adsorbents to removal copper.

Study on Adsorption Kinetic Characteristics of Propineb Pesticide on Activated Carbon (활성탄에 대한 프로피네브 농약의 흡착동력학적 특성 연구)

  • Lee, Jong-Jib;Cho, Jung-Ho;Kim, Heung-Tae
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.346-352
    • /
    • 2011
  • The adsorption characteristics of propineb pesticide onto activated carbon has been investigated for the adsorption in aqueous solution with respect to initial concentration, contact time and temperature in batch experiment. The Langmuir and Freundlich adsorption models were applied to described the equilibrium isotherms and isotherm constants were also determined. The Freundlich model agrees with experimental data well. slope of isotherm line indicate that activated carbon could be employed as effective treatment for removal of propineb. The pseudo first order, pseudo second order kinetic models were use to describe the kinetic data and rate constants were evaluated. The adsorption process followed a pseudo second order model, and the adsorption rate constant($k_2$) decreased with increasing initial concentration of propineb. The activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The estimated values for change of free energy were -7.28, -8.27 and -11.66 kJ/mol over activated carbon at 298, 308 and 318 K, respectively. The results indicated toward a spontaneous process. The positive value for change of enthalpy, 54.46 kJ/mol, found that the adsorption of propineb on activated carbon is an endothermic process.

Degradation of the Chlorothalonil by Functional Zeolite-KCIO3 Complex (기능성 Zeolite-KCIO3 복합체에 의한 Chlorothalonil의 분해)

  • Choi, Choong-Lyeal;Park, Man;Lee, Dong-Hoon;Lee, Byung-Mook;Rhee, In-Koo;Choi, Jyung;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.2
    • /
    • pp.111-116
    • /
    • 2004
  • Salt occlusion in Zeolite is a unique phenomenon that takes place only when the salt size is similar to the window size of host zeolite. $KCIO_3$-occluded Zeolite, as an environment-friendly oxidant, has a high potential for effective removal of various organic pollutants. This study was carried to investigate the characteristics and the removal kinetics of fungicide chlorothalonil by zeolite-$KCIO_3$ complex. About 10% of $KCIO_3$ was occluded in zeolite pores synthesized by salt-thermal method from fly ash, although the occlusion amount was relatively less compared to that of nitrate salts. By occlusion with $KCIO_3$, no remarkable changes were found in X-ray diffraction patterns of cancrinite, whereas some decrease of overall peak intensities was found with those of sodalite. Different releasing kinetics of $CIO_3^-$ ion were observed in distilled water and soil solution from zeolite-$KCIO_3$ complex. Two reactions, hydration and diffusion, seem to be related with the release of $KCIO_3$. Therefore, the release isotherm of $CIO_3^-$ ion well fitted to the power function model which indicate the release was made by hydration and diffusion. The removal of chlorothalonil by zeolite and $KCIO_3$ reached at reaction equilibrium within 6 hours by 18% and 47% respectively. However, the chlorothalonil removal by the zeolite-$KCIO_3$ complex increased slowly and steadily up to 92% in 96 hours. These findings suggested that zeolite-$KCIO_3$ complex could be applied for effective removal of organic contaminants in the soil and aqueous environment.