References
- Service RF. Desalination freshens up. Science 2006;313:1088-1090. https://doi.org/10.1126/science.313.5790.1088
- Sanza MA, Bonnelyea V, Cremerb G. Fujairah reverse osmosis plant: 2 years of operation. Desalination 2007;203:91-99. https://doi.org/10.1016/j.desal.2006.03.526
- Sauvet-Goichon B. Ashkelon desalination plant--a successful challenge. Desalination 2007;203:75-81. https://doi.org/10.1016/j.desal.2006.03.525
- Prihasto N, Liu QF, Kim SH. Pre-treatment strategies for seawater desalination by reverse osmosis system. Desalination 2009;249:308-316. https://doi.org/10.1016/j.desal.2008.09.010
- Al-Amoudi AS. Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes: a review. Desalination 2010;259:1-10. https://doi.org/10.1016/j.desal.2010.04.003
- Cronan CS, Aiken GR. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York. Geochim. Cosmochim. Acta 1985;49:1697-1705. https://doi.org/10.1016/0016-7037(85)90140-1
- Baronti C, Curini R, D'Ascenzo G, Di Corcia A, Gentili A, Samperi R. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ. Sci. Technol. 2000;34:5059-5066. https://doi.org/10.1021/es001359q
- Snyder SA, Westerhoff P, Yoon Y, Sedlak DL. Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ. Eng. Sci. 2003;20:449-469. https://doi.org/10.1089/109287503768335931
- Yoon Y, Ryu J, Oh J, Choi BG, Snyder SA. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci. Total Environ. 2010;408:636-643. https://doi.org/10.1016/j.scitotenv.2009.10.049
- Heemken OP, Reincke H, Stachel B, Theobald N. The occurrence of xenoestrogens in the Elbe river and the North Sea. Chemosphere 2001;45:245-259. https://doi.org/10.1016/S0045-6535(00)00570-1
- Snyder S, Vanderford B, Pearson R, Quinones O, Yoon Y. Analytical methods used to measure endocrine disrupting compounds in water. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 2003;7:224-234. https://doi.org/10.1061/(ASCE)1090-025X(2003)7:4(224)
- Adams C, Wang Y, Loftin K, Meyer M. Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng. 2002;128:253-260. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:3(253)
- Trenholm RA, Vanderford BJ, Drewes JE, Snyder SA. Determination of household chemicals using gas chromatography and liquid chromatography with tandem mass spectrometry. J. Chromatogr. 2008;1190:253-262. https://doi.org/10.1016/j.chroma.2008.02.032
- Vanderford BJ, Snyder SA. Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry. Environ. Sci. Technol. 2006;40:7312-7320. https://doi.org/10.1021/es0613198
-
Alum A, Yoon Y, Westerhoff P, Abbaszadegan M. Oxidation of bisphenol A,
$17\beta$ -estradiol, and$17\alpha$ -ethynyl estradiol and byproduct estrogenicity. Environ. Toxicol. 2004;19:257-264. https://doi.org/10.1002/tox.20018 - Zhang TC, Emary SC. Jar tests for evaluation of atrazine removal at drinking water treatment plants. Environ. Eng. Sci. 1999;16:417-432. https://doi.org/10.1089/ees.1999.16.417
-
Yoon Y, Westerhoff P, Snyder SA, Esparza M. HPLC-fluorescence detection and adsorption of bisphenol A,
$17\beta$ -estradiol, and$17\alpha$ -ethynyl estradiol on powdered activated carbon. Water Res. 2003;37:3530-3537. https://doi.org/10.1016/S0043-1354(03)00239-2 - An D, Song JX, Gao W, Chen GG, Gao NY. Molecular weight distribution for nom in different drinking water treatment processes. Desalin. Water Treat. 2009;5:267-274. https://doi.org/10.5004/dwt.2009.493
-
De Gusseme B, Pycke B, Hennebel T, et al. Biological removal of
$17\alpha$ -ethinylestradiol by a nitrifier enrichment culture in a membrane bioreactor. Water Res. 2009;43:2493-2503. https://doi.org/10.1016/j.watres.2009.02.028 - Snyder SA, Leising J, Westerhoff P, Yoon Y, Mash H, Vanderford B. Biological and physical attenuation of endocrine disruptors and pharmaceuticals: implications for water reuse. Ground Water Monit. Remediat. 2004;24:108-118. https://doi.org/10.1111/j.1745-6592.2004.tb00719.x
- Campinas M, Rosa MJ. Comparing PAC/UF and conventional clarification with PAC for removing microcystins from natural waters. Desalin. Water Treat. 2010;16:120-128. https://doi.org/10.5004/dwt.2010.1092
- Yoon Y, Amy G, Cho J, Her N. Effects of retained natural organic matter (NOM) on NOM rejection and membrane flux decline with nanofiltration and ultrafiltration. Desalination 2005;173:209-221. https://doi.org/10.1016/j.desal.2004.06.213
- Yu Z, Peldszus S, Huck PM. Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound-Naproxen, carbamazepine and nonylphenol-on activated carbon. Water Res. 2008;42:2873-2882. https://doi.org/10.1016/j.watres.2008.02.020
- Kimura K, Iwase T, Kita S, Watanabe Y. Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes. Water Res. 2009;43:3751-3758. https://doi.org/10.1016/j.watres.2009.05.042
-
Yoon Y, Westerhoff P, Snyder SA. Adsorption of 3H-labeled
$17-\beta$ estradiol on powdered activated carbon. Water Air Soil Pollut. 2005;166:343-351. https://doi.org/10.1007/s11270-005-7274-z - Yoon Y, Westerhoff P, Snyder SA, Wert EC. Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J. Membr. Sci. 2006;270:88-100. https://doi.org/10.1016/j.memsci.2005.06.045
- Suri RPS, Singh TS, Abburi S. Influence of alkalinity and salinity on the sonochemical degradation of estrogen hormones in aqueous solution. Environ. Sci. Technol. 2010;44:1373-1379. https://doi.org/10.1021/es9024595
- Van Geluwea S, Braekena L, Vinckierb C, Van der Bruggen B. Ozonation and perozonation of humic acids in nanofiltration concentrates. Desalin. Water Treat. 2009;6:217-221. https://doi.org/10.5004/dwt.2009.643
- Westerhoff P, Yoon Y, Snyder S, Wert E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 2005;39:6649-6663. https://doi.org/10.1021/es0484799
- Adewuyi YG. Sonochemistry: environmental science and engineering applications. Ind. Eng. Chem. Res. 2001;40:4681-4715. https://doi.org/10.1021/ie010096l
- Naddeo V, Belgiorno V, Napoli RMA. Behaviour of natural organic mater during ultrasonic irradiation. Desalination 2007;210:175-182. https://doi.org/10.1016/j.desal.2006.05.042
- De Bel E, Dewulf J, Witte BD, Van Langenhove H, Janssen C. Influence of pH on the sonolysis of ciprofloxacin: biodegradability, ecotoxicity and antibiotic activity of its degradation products. Chemosphere 2009;77:291-295. https://doi.org/10.1016/j.chemosphere.2009.07.033
- Fu H, Suri RPS, Chimchirian RF, Helmig E, Constable R. Ultrasound-induced destruction of low levels of estrogen hormones in aqueous solutions. Environ. Sci. Technol. 2007;41:5869-5874. https://doi.org/10.1021/es0703372
- Syracuse Research Corporation. Interactive PhysProp database demo [Internet]. Syracuse, NY: Syracuse Research Corporation; c2011 [cited 2011 Feb 4]. Available from: http://www.syrres.com/what-we-do/databaseforms.aspx?id=386.
-
Al-Rasheed R, Cardin DJ. Photocatalytic degradation of humic acid in saline waters. Part 1. Artificial seawater: influence of
$TiO_2$ , temperature, pH, and air-flow. Chemosphere 2003;51:925-933. https://doi.org/10.1016/S0045-6535(03)00097-3 - Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P. Reverse osmosis desalination: water sources, technology, and today's challenges. Water Res. 2009;43:2317-2348. https://doi.org/10.1016/j.watres.2009.03.010
- Ahrer W, Scherwenk E, Buchberger W. Determination of drug residues in water by the combination of liquid chromatography or capillary electrophoresis with electrospray mass spectrometry. J. Chromatogr. 2001;910:69-78. https://doi.org/10.1016/S0021-9673(00)01187-0
-
Kormann C, Bahnemann DW, Hoffmann MR. Photocatalytic production of
$H_2O_2$ and organic peroxides in aqueous suspensions of$TiO_2$ , ZnO, and desert sand. Environ. Sci. Technol. 1988;22:798-806. https://doi.org/10.1021/es00172a009 - Suslick KS, Schubert PF, Goodale JW. Sonochemistry and sonocatalysis of iron carbonyls. J. Am. Chem. Soc. 1981;103:7342-7344. https://doi.org/10.1021/ja00414a054
- Petrier C, Lamy MF, Francony A, et al. Sonochemical degradation of phenol in dilute aqueous solutions: comparison of the reaction rates at 20 and 487 kHz. J. Phys. Chem. 1994;98:10514-10520. https://doi.org/10.1021/j100092a021
- Gogate PR. Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: a review of the current status and the way forward. Ultrason. Sonochem. 2008;15:1-15. https://doi.org/10.1016/j.ultsonch.2007.04.007
- Kidak R, Ince NH. Ultrasonic destruction of phenol and substituted phenols: a review of current research. Ultrason. Sonochem. 2006;13:195-199. https://doi.org/10.1016/j.ultsonch.2005.11.004
- Kotronarou A, Mills G, Hoffmann MR. Ultrasonic irradiation of p-nitrophenol in aqueous solution. J. Phys. Chem. 1991;95:3630-3638. https://doi.org/10.1021/j100162a037
- Ma J, Graham NJD. Degradation of atrazine by manganese-catalysed ozonation--influence of radical scavengers. Water Res. 2000;34:3822-3828. https://doi.org/10.1016/S0043-1354(00)00130-5
- Cheng J, Vecitis CD, Park H, Mader BT, Hoffmann MR. Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: environmental matrix effects. Environ. Sci. Technol. 2008;42:8057-8063. https://doi.org/10.1021/es8013858
- Torres RA, Petrier C, Combet E, Carrier M, Pulgarin C. Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA byproducts. Ultrason. Sonochem. 2008;15:605-611. https://doi.org/10.1016/j.ultsonch.2007.07.003
- Torres RA, Petrier C, Combet E, Moulet F, Pulgarin C. Bisphenol A mineralization by integrated ultrasound-UV-iron (II) treatment. Environ. Sci. Technol. 2007;41:297-302. https://doi.org/10.1021/es061440e
- Huber MM, Canonica S, Park GY, von Gunten U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol. 2003;37:1016-1024. https://doi.org/10.1021/es025896h
- Behnajady MA, Modirshahla N, Tabrizi SB, Molanee S. Ultrasonic degradation of Rhodamine B in aqueous solution: influence of operational parameters. J. Hazard. Mater. 2008;152:381-386. https://doi.org/10.1016/j.jhazmat.2007.07.019
- Ince NH, Tezcanli G, Belen RK, Apikyan IG. Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl. Catal. B Environ. 2001;29:167-176. https://doi.org/10.1016/S0926-3373(00)00224-1
- Furman O, Laine DF, Blumenfeld A, et al. Enhanced reactivity of superoxide in water--solid matrices. Environ. Sci. Technol. 2009;43:1528-1533. https://doi.org/10.1021/es802505s
- Asakura Y, Nishida T, Matsuoka T, Koda S. Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors. Ultrason. Sonochem. 2008;15:244-250. https://doi.org/10.1016/j.ultsonch.2007.03.012
-
Shimizu N, Ogino C, Dadjour MF, Murata T. Sonocatalytic degradation of methylene blue with
$TiO_2$ pellets in water. Ultrason. Sonochem. 2007;14:184-190. https://doi.org/10.1016/j.ultsonch.2006.04.002 - Wang J, Pan Z, Zhang Z, et al. Sonocatalytic degradation of methyl parathion in the presence of nanometer and ordinary anatase titanium dioxide catalysts and comparison of their sonocatalytic abilities. Ultrason. Sonochem. 2006;13:493-500. https://doi.org/10.1016/j.ultsonch.2005.11.002
- Segebarth N, Eulaerts O, Reisse J, Crum LA, Matula TJ. Correlation between acoustic cavitation noise, bubble population, and sonochemistry. J. Phys. Chem. B 2002;106:9181-9190.
- Crum LA. Comments on the evolving field of sonochemistry by a cavitation physicist. Ultrason. Sonochem. 1995;2:S147-S152. https://doi.org/10.1016/1350-4177(95)00018-2
- Burdin F, Tsochatzidis NA, Guiraud P, Wilhelm AM, Delmas H. Characterisation of the acoustic cavitation cloud by two laser techniques. Ultrason. Sonochem. 1999;6:43-51. https://doi.org/10.1016/S1350-4177(98)00035-2
- Lee J, Ashokkumar M, Kentish S, Grieser F. Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field. J. Am. Chem. Soc. 2005;127:16810-16811. https://doi.org/10.1021/ja0566432
- Tsochatzidis NA, Guiraud P, Wilhelm AM, Delmas H. Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique. Chem. Eng. Sci. 2001;56:1831-1840. https://doi.org/10.1016/S0009-2509(00)00460-7
- Bai Lx, Xu Wl, Tian Z, Li Nw. A high-speed photographic study of ultrasonic cavitation near rigid boundary. J. Hydrodyn. 2008;20:637-644. https://doi.org/10.1016/S1001-6058(08)60106-7
-
Kanthale P, Ashokkumar M, Grieser F. Sonoluminescence, sonochemistry (
$H_2O_2$ yield) and bubble dynamics: frequency and power effects. Ultrason. Sonochem. 2008;15:143-150. https://doi.org/10.1016/j.ultsonch.2007.03.003 - Taylor E Jr., Cook BB, Tarr MA. Dissolved organic matter inhibition of sonochemical degradation of aqueous polycyclic aromatic hydrocarbons. Ultrason. Sonochem. 1999;6:175-183. https://doi.org/10.1016/S1350-4177(99)00015-2
- Joseph JM, Destaillats H, Hung HM, Hoffmann MR. The sonochemical degradation of azobenzene and related azo dyes: rate enhancements via Fenton's reactions. J. Phys. Chem. A 2000;104:301-307. https://doi.org/10.1021/jp992354m
-
Kosky PG, Silva J M, Guggenheim EA. The aqueous phase in the interfacial synthesis of polycarbonates. 1. Ionic equilibria and experimental solubilities in the BPA-NaOH-
$H_2O$ system. Industrial & Engineering Chemistry Research 1991;30:462-467. https://doi.org/10.1021/ie00051a005
Cited by
- A Study of Full Scale PUV/US Hybrid System for Contaminant Treatment in Groundwater vol.39, pp.10, 2017, https://doi.org/10.4491/KSEE.2017.39.10.575
- Label free selective detection of estriol using graphene oxide-based fluorescence sensor vol.116, pp.3, 2014, https://doi.org/10.1063/1.4890024
- A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism vol.45, pp.None, 2011, https://doi.org/10.1016/j.ultsonch.2018.03.003
- Ultrasound-activated peroxydisulfate process with copper film to remove bisphenol A: Operational parameter impact and back propagation-artificial neural network modeling vol.44, pp.None, 2011, https://doi.org/10.1016/j.jwpe.2021.102326
- A critical review on the sonochemical degradation of organic pollutants in urine, seawater, and mineral water vol.82, pp.None, 2022, https://doi.org/10.1016/j.ultsonch.2021.105861