DOI QR코드

DOI QR Code

Ultrasonic Degradation of Endocrine Disrupting Compounds in Seawater and Brackish Water

  • Park, So-Young (School of Public Health, Seoul National University) ;
  • Park, Jong-Sung (Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon) ;
  • Lee, Ha-Yoon (Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon) ;
  • Heo, Ji-Yong (Department of Engineering, University of South Carolina) ;
  • Yoon, Yeo-Min (Department of Engineering, University of South Carolina) ;
  • Choi, Kyung-Ho (School of Public Health, Seoul National University) ;
  • Her, Nam-Guk (Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon)
  • Received : 2011.05.23
  • Accepted : 2011.07.14
  • Published : 2011.09.30

Abstract

In this study, a series of experiments was conducted on the relative degradation of commonly known endocrine-disrupting compounds such as bisphenol A (BPA) and $17{\alpha}$-ethinyl estradiol (EE2) in a single-component aqueous solution using 28 and 580 kHz ultrasonic reactors. The experiments were conducted with three different types of model water: deionized water (DI), synthetic brackish water (SBW), and synthetic seawater (SSW) at pH 4, 7.5, and 11 in the presence of inert glass beads and humic acids. Significantly higher sonochemical degradation (93-97% for BPA) occurred at 580 kHz than at 28 kHz (43-61% for BPA), regardless of water type. A slightly higher degradation was observed for EE2 compared to that of BPA. The degradation rate of BPA and EE2 in DI water, SBW, and SSW after 30 min of ultrasound irradiation at 580 kHz increased slightly with the increase in pH from 4 (0.073-0.091 $min^{-1}$ for BPA and 0.081-0.094 $min^{-1}$ for EE2) to 7.5 (0.087-0.114 $min^{-1}$ for BPA and 0.092-0.124 $min^{-1}$ for EE2). In contrast, significant degradation was observed at pH 11 (0.149-0.221 $min^{-1}$ for BPA and 0.147-0.228 $min^{-1}$ for EE2). For the given frequencies of 28 and 580 kHz, the degradation rate increased in the presence of glass beads (0.1 mm and 25 g) for both BPA and EE2: 0.018-0.107 $min^{-1}$ without beads and 0.052-0.142 $min^{-1}$ with beads for BPA; 0.021-0.111 $min^{-1}$ without beads and 0.054-0.136 $min^{-1}$ with beads for EE2. A slight increase in degradation of both BPA and EE2 was found as the concentration of dissolved organic carbon (DOC, humic acids) increased in both SBW and SSW: 0.107-0.115 $min^{-1}$ in SBW and 0.087-0.101 $min^{-1}$ in SSW for BPA; 0.111-0.111 $min^{-1}$ in SWB and 0.092-0.105 $min^{-1}$ in SSW for EE2. After 30 min of sonicating the humic acid solution, DOC removal varied depending on the water type: 27% (3 mg $L^{-1}$) and 7% (10 mg $L^{-1}$) in SBW and 7% (3 mg $L^{-1}$) and 4% (10 mg $L^{-1}$) in SSW.

Keywords

References

  1. Service RF. Desalination freshens up. Science 2006;313:1088-1090. https://doi.org/10.1126/science.313.5790.1088
  2. Sanza MA, Bonnelyea V, Cremerb G. Fujairah reverse osmosis plant: 2 years of operation. Desalination 2007;203:91-99. https://doi.org/10.1016/j.desal.2006.03.526
  3. Sauvet-Goichon B. Ashkelon desalination plant--a successful challenge. Desalination 2007;203:75-81. https://doi.org/10.1016/j.desal.2006.03.525
  4. Prihasto N, Liu QF, Kim SH. Pre-treatment strategies for seawater desalination by reverse osmosis system. Desalination 2009;249:308-316. https://doi.org/10.1016/j.desal.2008.09.010
  5. Al-Amoudi AS. Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes: a review. Desalination 2010;259:1-10. https://doi.org/10.1016/j.desal.2010.04.003
  6. Cronan CS, Aiken GR. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York. Geochim. Cosmochim. Acta 1985;49:1697-1705. https://doi.org/10.1016/0016-7037(85)90140-1
  7. Baronti C, Curini R, D'Ascenzo G, Di Corcia A, Gentili A, Samperi R. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ. Sci. Technol. 2000;34:5059-5066. https://doi.org/10.1021/es001359q
  8. Snyder SA, Westerhoff P, Yoon Y, Sedlak DL. Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ. Eng. Sci. 2003;20:449-469. https://doi.org/10.1089/109287503768335931
  9. Yoon Y, Ryu J, Oh J, Choi BG, Snyder SA. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci. Total Environ. 2010;408:636-643. https://doi.org/10.1016/j.scitotenv.2009.10.049
  10. Heemken OP, Reincke H, Stachel B, Theobald N. The occurrence of xenoestrogens in the Elbe river and the North Sea. Chemosphere 2001;45:245-259. https://doi.org/10.1016/S0045-6535(00)00570-1
  11. Snyder S, Vanderford B, Pearson R, Quinones O, Yoon Y. Analytical methods used to measure endocrine disrupting compounds in water. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 2003;7:224-234. https://doi.org/10.1061/(ASCE)1090-025X(2003)7:4(224)
  12. Adams C, Wang Y, Loftin K, Meyer M. Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng. 2002;128:253-260. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:3(253)
  13. Trenholm RA, Vanderford BJ, Drewes JE, Snyder SA. Determination of household chemicals using gas chromatography and liquid chromatography with tandem mass spectrometry. J. Chromatogr. 2008;1190:253-262. https://doi.org/10.1016/j.chroma.2008.02.032
  14. Vanderford BJ, Snyder SA. Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry. Environ. Sci. Technol. 2006;40:7312-7320. https://doi.org/10.1021/es0613198
  15. Alum A, Yoon Y, Westerhoff P, Abbaszadegan M. Oxidation of bisphenol A, $17\beta$-estradiol, and $17\alpha$-ethynyl estradiol and byproduct estrogenicity. Environ. Toxicol. 2004;19:257-264. https://doi.org/10.1002/tox.20018
  16. Zhang TC, Emary SC. Jar tests for evaluation of atrazine removal at drinking water treatment plants. Environ. Eng. Sci. 1999;16:417-432. https://doi.org/10.1089/ees.1999.16.417
  17. Yoon Y, Westerhoff P, Snyder SA, Esparza M. HPLC-fluorescence detection and adsorption of bisphenol A, $17\beta$-estradiol, and $17\alpha$-ethynyl estradiol on powdered activated carbon. Water Res. 2003;37:3530-3537. https://doi.org/10.1016/S0043-1354(03)00239-2
  18. An D, Song JX, Gao W, Chen GG, Gao NY. Molecular weight distribution for nom in different drinking water treatment processes. Desalin. Water Treat. 2009;5:267-274. https://doi.org/10.5004/dwt.2009.493
  19. De Gusseme B, Pycke B, Hennebel T, et al. Biological removal of $17\alpha$-ethinylestradiol by a nitrifier enrichment culture in a membrane bioreactor. Water Res. 2009;43:2493-2503. https://doi.org/10.1016/j.watres.2009.02.028
  20. Snyder SA, Leising J, Westerhoff P, Yoon Y, Mash H, Vanderford B. Biological and physical attenuation of endocrine disruptors and pharmaceuticals: implications for water reuse. Ground Water Monit. Remediat. 2004;24:108-118. https://doi.org/10.1111/j.1745-6592.2004.tb00719.x
  21. Campinas M, Rosa MJ. Comparing PAC/UF and conventional clarification with PAC for removing microcystins from natural waters. Desalin. Water Treat. 2010;16:120-128. https://doi.org/10.5004/dwt.2010.1092
  22. Yoon Y, Amy G, Cho J, Her N. Effects of retained natural organic matter (NOM) on NOM rejection and membrane flux decline with nanofiltration and ultrafiltration. Desalination 2005;173:209-221. https://doi.org/10.1016/j.desal.2004.06.213
  23. Yu Z, Peldszus S, Huck PM. Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound-Naproxen, carbamazepine and nonylphenol-on activated carbon. Water Res. 2008;42:2873-2882. https://doi.org/10.1016/j.watres.2008.02.020
  24. Kimura K, Iwase T, Kita S, Watanabe Y. Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes. Water Res. 2009;43:3751-3758. https://doi.org/10.1016/j.watres.2009.05.042
  25. Yoon Y, Westerhoff P, Snyder SA. Adsorption of 3H-labeled $17-\beta$ estradiol on powdered activated carbon. Water Air Soil Pollut. 2005;166:343-351. https://doi.org/10.1007/s11270-005-7274-z
  26. Yoon Y, Westerhoff P, Snyder SA, Wert EC. Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J. Membr. Sci. 2006;270:88-100. https://doi.org/10.1016/j.memsci.2005.06.045
  27. Suri RPS, Singh TS, Abburi S. Influence of alkalinity and salinity on the sonochemical degradation of estrogen hormones in aqueous solution. Environ. Sci. Technol. 2010;44:1373-1379. https://doi.org/10.1021/es9024595
  28. Van Geluwea S, Braekena L, Vinckierb C, Van der Bruggen B. Ozonation and perozonation of humic acids in nanofiltration concentrates. Desalin. Water Treat. 2009;6:217-221. https://doi.org/10.5004/dwt.2009.643
  29. Westerhoff P, Yoon Y, Snyder S, Wert E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 2005;39:6649-6663. https://doi.org/10.1021/es0484799
  30. Adewuyi YG. Sonochemistry: environmental science and engineering applications. Ind. Eng. Chem. Res. 2001;40:4681-4715. https://doi.org/10.1021/ie010096l
  31. Naddeo V, Belgiorno V, Napoli RMA. Behaviour of natural organic mater during ultrasonic irradiation. Desalination 2007;210:175-182. https://doi.org/10.1016/j.desal.2006.05.042
  32. De Bel E, Dewulf J, Witte BD, Van Langenhove H, Janssen C. Influence of pH on the sonolysis of ciprofloxacin: biodegradability, ecotoxicity and antibiotic activity of its degradation products. Chemosphere 2009;77:291-295. https://doi.org/10.1016/j.chemosphere.2009.07.033
  33. Fu H, Suri RPS, Chimchirian RF, Helmig E, Constable R. Ultrasound-induced destruction of low levels of estrogen hormones in aqueous solutions. Environ. Sci. Technol. 2007;41:5869-5874. https://doi.org/10.1021/es0703372
  34. Syracuse Research Corporation. Interactive PhysProp database demo [Internet]. Syracuse, NY: Syracuse Research Corporation; c2011 [cited 2011 Feb 4]. Available from: http://www.syrres.com/what-we-do/databaseforms.aspx?id=386.
  35. Al-Rasheed R, Cardin DJ. Photocatalytic degradation of humic acid in saline waters. Part 1. Artificial seawater: influence of $TiO_2$, temperature, pH, and air-flow. Chemosphere 2003;51:925-933. https://doi.org/10.1016/S0045-6535(03)00097-3
  36. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P. Reverse osmosis desalination: water sources, technology, and today's challenges. Water Res. 2009;43:2317-2348. https://doi.org/10.1016/j.watres.2009.03.010
  37. Ahrer W, Scherwenk E, Buchberger W. Determination of drug residues in water by the combination of liquid chromatography or capillary electrophoresis with electrospray mass spectrometry. J. Chromatogr. 2001;910:69-78. https://doi.org/10.1016/S0021-9673(00)01187-0
  38. Kormann C, Bahnemann DW, Hoffmann MR. Photocatalytic production of $H_2O_2$ and organic peroxides in aqueous suspensions of $TiO_2$, ZnO, and desert sand. Environ. Sci. Technol. 1988;22:798-806. https://doi.org/10.1021/es00172a009
  39. Suslick KS, Schubert PF, Goodale JW. Sonochemistry and sonocatalysis of iron carbonyls. J. Am. Chem. Soc. 1981;103:7342-7344. https://doi.org/10.1021/ja00414a054
  40. Petrier C, Lamy MF, Francony A, et al. Sonochemical degradation of phenol in dilute aqueous solutions: comparison of the reaction rates at 20 and 487 kHz. J. Phys. Chem. 1994;98:10514-10520. https://doi.org/10.1021/j100092a021
  41. Gogate PR. Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: a review of the current status and the way forward. Ultrason. Sonochem. 2008;15:1-15. https://doi.org/10.1016/j.ultsonch.2007.04.007
  42. Kidak R, Ince NH. Ultrasonic destruction of phenol and substituted phenols: a review of current research. Ultrason. Sonochem. 2006;13:195-199. https://doi.org/10.1016/j.ultsonch.2005.11.004
  43. Kotronarou A, Mills G, Hoffmann MR. Ultrasonic irradiation of p-nitrophenol in aqueous solution. J. Phys. Chem. 1991;95:3630-3638. https://doi.org/10.1021/j100162a037
  44. Ma J, Graham NJD. Degradation of atrazine by manganese-catalysed ozonation--influence of radical scavengers. Water Res. 2000;34:3822-3828. https://doi.org/10.1016/S0043-1354(00)00130-5
  45. Cheng J, Vecitis CD, Park H, Mader BT, Hoffmann MR. Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: environmental matrix effects. Environ. Sci. Technol. 2008;42:8057-8063. https://doi.org/10.1021/es8013858
  46. Torres RA, Petrier C, Combet E, Carrier M, Pulgarin C. Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA byproducts. Ultrason. Sonochem. 2008;15:605-611. https://doi.org/10.1016/j.ultsonch.2007.07.003
  47. Torres RA, Petrier C, Combet E, Moulet F, Pulgarin C. Bisphenol A mineralization by integrated ultrasound-UV-iron (II) treatment. Environ. Sci. Technol. 2007;41:297-302. https://doi.org/10.1021/es061440e
  48. Huber MM, Canonica S, Park GY, von Gunten U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol. 2003;37:1016-1024. https://doi.org/10.1021/es025896h
  49. Behnajady MA, Modirshahla N, Tabrizi SB, Molanee S. Ultrasonic degradation of Rhodamine B in aqueous solution: influence of operational parameters. J. Hazard. Mater. 2008;152:381-386. https://doi.org/10.1016/j.jhazmat.2007.07.019
  50. Ince NH, Tezcanli G, Belen RK, Apikyan IG. Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl. Catal. B Environ. 2001;29:167-176. https://doi.org/10.1016/S0926-3373(00)00224-1
  51. Furman O, Laine DF, Blumenfeld A, et al. Enhanced reactivity of superoxide in water--solid matrices. Environ. Sci. Technol. 2009;43:1528-1533. https://doi.org/10.1021/es802505s
  52. Asakura Y, Nishida T, Matsuoka T, Koda S. Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors. Ultrason. Sonochem. 2008;15:244-250. https://doi.org/10.1016/j.ultsonch.2007.03.012
  53. Shimizu N, Ogino C, Dadjour MF, Murata T. Sonocatalytic degradation of methylene blue with $TiO_2$ pellets in water. Ultrason. Sonochem. 2007;14:184-190. https://doi.org/10.1016/j.ultsonch.2006.04.002
  54. Wang J, Pan Z, Zhang Z, et al. Sonocatalytic degradation of methyl parathion in the presence of nanometer and ordinary anatase titanium dioxide catalysts and comparison of their sonocatalytic abilities. Ultrason. Sonochem. 2006;13:493-500. https://doi.org/10.1016/j.ultsonch.2005.11.002
  55. Segebarth N, Eulaerts O, Reisse J, Crum LA, Matula TJ. Correlation between acoustic cavitation noise, bubble population, and sonochemistry. J. Phys. Chem. B 2002;106:9181-9190.
  56. Crum LA. Comments on the evolving field of sonochemistry by a cavitation physicist. Ultrason. Sonochem. 1995;2:S147-S152. https://doi.org/10.1016/1350-4177(95)00018-2
  57. Burdin F, Tsochatzidis NA, Guiraud P, Wilhelm AM, Delmas H. Characterisation of the acoustic cavitation cloud by two laser techniques. Ultrason. Sonochem. 1999;6:43-51. https://doi.org/10.1016/S1350-4177(98)00035-2
  58. Lee J, Ashokkumar M, Kentish S, Grieser F. Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field. J. Am. Chem. Soc. 2005;127:16810-16811. https://doi.org/10.1021/ja0566432
  59. Tsochatzidis NA, Guiraud P, Wilhelm AM, Delmas H. Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique. Chem. Eng. Sci. 2001;56:1831-1840. https://doi.org/10.1016/S0009-2509(00)00460-7
  60. Bai Lx, Xu Wl, Tian Z, Li Nw. A high-speed photographic study of ultrasonic cavitation near rigid boundary. J. Hydrodyn. 2008;20:637-644. https://doi.org/10.1016/S1001-6058(08)60106-7
  61. Kanthale P, Ashokkumar M, Grieser F. Sonoluminescence, sonochemistry ($H_2O_2$ yield) and bubble dynamics: frequency and power effects. Ultrason. Sonochem. 2008;15:143-150. https://doi.org/10.1016/j.ultsonch.2007.03.003
  62. Taylor E Jr., Cook BB, Tarr MA. Dissolved organic matter inhibition of sonochemical degradation of aqueous polycyclic aromatic hydrocarbons. Ultrason. Sonochem. 1999;6:175-183. https://doi.org/10.1016/S1350-4177(99)00015-2
  63. Joseph JM, Destaillats H, Hung HM, Hoffmann MR. The sonochemical degradation of azobenzene and related azo dyes: rate enhancements via Fenton's reactions. J. Phys. Chem. A 2000;104:301-307. https://doi.org/10.1021/jp992354m
  64. Kosky PG, Silva J M, Guggenheim EA. The aqueous phase in the interfacial synthesis of polycarbonates. 1. Ionic equilibria and experimental solubilities in the BPA-NaOH-$H_2O$ system. Industrial & Engineering Chemistry Research 1991;30:462-467. https://doi.org/10.1021/ie00051a005

Cited by

  1. A Study of Full Scale PUV/US Hybrid System for Contaminant Treatment in Groundwater vol.39, pp.10, 2017, https://doi.org/10.4491/KSEE.2017.39.10.575
  2. Label free selective detection of estriol using graphene oxide-based fluorescence sensor vol.116, pp.3, 2014, https://doi.org/10.1063/1.4890024
  3. A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism vol.45, pp.None, 2011, https://doi.org/10.1016/j.ultsonch.2018.03.003
  4. Ultrasound-activated peroxydisulfate process with copper film to remove bisphenol A: Operational parameter impact and back propagation-artificial neural network modeling vol.44, pp.None, 2011, https://doi.org/10.1016/j.jwpe.2021.102326
  5. A critical review on the sonochemical degradation of organic pollutants in urine, seawater, and mineral water vol.82, pp.None, 2022, https://doi.org/10.1016/j.ultsonch.2021.105861