DOI QR코드

DOI QR Code

Enhancement of Manganese Removal Ability from Water Phase Using Biochar of Prinus densiflora Bark

소나무 수피 바이오차를 이용한 수중에서 망간의 제거능력 향상

  • Kim, Min-Ji (Institute of Carbon Fusion Technology (InCFT), Chungnam National University) ;
  • Choi, Jung Hoon (H-Pluseco Co., Ltd) ;
  • Choi, Tae Ryeong (Department of Environment Safety System Engineering, Semyung University) ;
  • Choi, Suk Soon (Department of Environment Safety System Engineering, Semyung University) ;
  • Ha, Jeong Hyub (Department of Integrated Environmental Systems, Pyeongtaek University) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 김민지 (충남대학교 탄소융복합기술연구소) ;
  • 최정훈 (에이치플러스에코) ;
  • 최태령 (세명대학교 환경안전시스템공학과) ;
  • 최석순 (세명대학교 환경안전시스템공학과) ;
  • 하정협 (평택대학교 환경융합시스템학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2020.08.15
  • Accepted : 2020.09.01
  • Published : 2020.10.12

Abstract

Manganese ions contained in water phase are acting as a toxic substance in the human body and also known to affect the nervous system. In particular, effective treatment technology is required since manganese removal is difficult due to its high solubility in a wide pH range. In this study, Prinus densiflora bark was chemically modified with hydrogen peroxide, and the modified adsorbent was used for removing manganese ions in an aqueous solution. The modified adsorbent showed high removal capacity of 82.1 and 56.2%, respectively, at conditions of 5 and 10 mg/L manganese ions. Also, the adsorption isotherm from the data was applied to the theoretical equation. As a result, the adsorption behavior of manganese ions was better suited to the Langmuir than Freundlich model, and it was also found from kinematics that the pseudo-second order kinetic model was more suitable. In addition, the changes of Gibbs free energy indicated that the adsorption reaction became more spontaneously with increasing temperature. Consequently, these experimental results may be used as a water treatment technology which can efficiently treat manganese ions contained in water.

수중에 함유된 망간 이온은 인체에 독성 물질로 작용하며, 또한 신경계에 영향을 미치는 것으로 알려져 있다. 특히 망간은 넓은 pH 영역에서 높은 용해성으로 인하여, 망간 제거가 어렵기 때문에 이를 효과적으로 처리하는 연구가 필요하다. 본 연구에서 소나무 수피 바이오차를 과산화수소로 화학적으로 개질하였고, 개질된 흡착제는 수중에서의 망간 이온 제거에 사용되었다. 개질된 흡착제는 망간이온 5, 10 mg/L 조건에서 각각 82.1, 56.2%의 높은 제거능력을 나타내었다. 또한 망간 농도 변화에 의한 흡착 데이터로부터 이론식에 적용하여 분석하였다. 그 결과 망간 이온의 흡착 거동은 Freundlich 보다는 Langmuir 모델에 잘 부합하였으며 또한, 동력학적 고찰에 의하면 유사 2차 반응식(pseudo-second order kinetic model)이 더욱 적합함을 알 수 있었다. 그리고 Gibbs 자유에너지 변화에서는 흡착 반응의 온도가 증가할수록 자발성이 보다 더 잘 이루어진다는 것을 도출하였다. 결과적으로 이러한 실험 결과들은 수중에 함유된 망간 이온을 효과적으로 제거하는 수처리 기술로 사용될 수 있을 것이다.

Keywords

References

  1. Y. S. Ok, J. E. Yang, Y. S. Zhang, S. J. Kim, and D. Y. Chung, Heavy metal adsorption by a formulated zeolite-Portland cement mixture, J. Hazard. Mater., 147, 91-96 (2007). https://doi.org/10.1016/j.jhazmat.2006.12.046
  2. J. M. Yeon, T. W. Jeon, Y. Y. Kang, M. J. Jeong, S. K. Shin, Y. J. Kim, and M. J. Jang, Study on heavy metals characteristics for recycling of wastewater treatment sludge, J. Korea Soc. Waste Manag., 33, 338-346 (2016). https://doi.org/10.9786/kswm.2016.33.4.338
  3. J. Liang, B. R. Lim, and S. K. Lee, Biosorption characteristics of heavy metals using enteromorpha prolifera, J. Korea Soc. Waste Manag., 33, 85-91 (2016). https://doi.org/10.9786/kswm.2016.33.1.85
  4. S. U. Kim, Y. G. Kim, S. M. Lee, H. C. Park, K. K. Kim, H. J. Son, S. W. Yun, S. Y. Kim, and C. O. Hong, The effect of bottom ash in reducing cadmium phytoavailability in cadmium-contaminated soil, Korean J. Environ Agric., 35, 152-157 (2016). https://doi.org/10.5338/KJEA.2016.35.2.19
  5. R. Y. Shin, H. S. Ryu, and J. H. Lee, Influence of heavy metal (Zn) inflow on species composition and morphological abnormalities of epilithic diatom in the river, J. Korean Soc. Water Environ., 33, 424-433 (2017). https://doi.org/10.15681/KSWE.2017.33.4.424
  6. H. Y. Lee, K. C. Hong, J. E. Lim, J. H. Joo, J. E. Yang, and Y. S. Ok, Adsorption of heavy metal ions from aqueous solution by chestnut shell, Korean J. Environ. Agric., 28, 69-74 (2009). https://doi.org/10.5338/KJEA.2009.28.1.069
  7. M. Aschner, T. R. Guilarte, J. S. Schneider, and W. Zheng, Manganese: Recent advances in understanding its transport and neurotoxicity, Toxicol. Appl. Pharmacol., 221, 131-147 (2007). https://doi.org/10.1016/j.taap.2007.03.001
  8. S. M. Bamforth, D. A. C. Manning, I. Singleton, P. L. Younger, and K. L. Johnson, Manganese removal from mine waters-investigating the occurrence and importance of manganese carbonates, Appl. Geochem., 21, 1274-1287 (2006). https://doi.org/10.1016/j.apgeochem.2006.06.004
  9. M. K. Doula, Removal of $Mn^{2+}$ ions from drinking water by using Clinoptilolite and a Clinoptilolite-Fe oxide system, Water Res., 40, 3167-3176 (2006). https://doi.org/10.1016/j.watres.2006.07.013
  10. E. Khoramzadeh, B. Nasernejad, and R. Halladj, Mercury biosorption from aqueous solutions by Sugarcane bagasse, J. Taiwan Inst. Chem., Eng., 44, 266-269 (2013). https://doi.org/10.1016/j.jtice.2012.09.004
  11. M. Ahmad, S. S. Lee, X. Dou, D. Mohan, J. K. Sung, J. E. Yang, and Y. S. Ok, Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water, Bioresour. Technol., 118, 536-544 (2012). https://doi.org/10.1016/j.biortech.2012.05.042
  12. W. B. Bae, G. R. Park, D. Y. Jung, and J. H. Ahn, Adsorption characteristics of zinc ion in synthetic wastewater by carbonaceous material prepared from oriental cherry, J. Korea Soc. Waste Manag., 35, 236-242 (2018). https://doi.org/10.9786/kswm.2018.35.3.236
  13. J. H. Park, H. C. Kim, Y. J. Kim, S. H. Kim, and D. C. Seo, Adsorption characteristics of copper using biochar derived from exhausted coffee residue, Korean J. Environ. Agric., 36, 22-28 (2017). https://doi.org/10.5338/KJEA.2017.36.1.02
  14. I. Ghodbane, L. Nouri, O. Hamdaoui, and M. Chiha, Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark, J. Hazard. Mater., 152, 148-158 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.079
  15. M. Ozacar, Adsorption of phosphate from aqueous solution onto alunite, Chemosphere, 51, 321-327 (2003). https://doi.org/10.1016/S0045-6535(02)00847-0
  16. H. A. Hasan, S. R. S. Abdullah, N. T. Kofli, and S. K. Kamarudin, Isotherm equilibria of $Mn^{2+}$ biosorption in drinking water treatment by locally isolated Bacillus species and sewage activated sludge, J. Environ. Manag., 111, 34-43 (2012). https://doi.org/10.1016/j.jenvman.2012.06.027
  17. Y. S. Ho and G. Mckay, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng., 76, 822-827 (1998). https://doi.org/10.1002/cjce.5450760419
  18. S. An, J. Choi, and J. Park, Kinetics and equilibrium adsorption studies of Cd adsorption by the activated carbon containing hydroxyapatite, J. Korea Geo-Environ. Soc., 11, 45-51 (2010).
  19. S. J. Allen, G. McKay, and K. Y. H. Khader, Intraparticle diffusion of basic dye during adsorption onto sphagnum peat, Environ. Pollut., 56, 39-50 (1989). https://doi.org/10.1016/0269-7491(89)90120-6
  20. W. J. Weber and J. C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89, 31-60 (1963). https://doi.org/10.1061/JSEDAI.0000430
  21. J. J. Lee, Equilibrium, kinetics and thermodynamic parameters studies on Metanil Yellow dye adsorption by granular activated carbon, Appl. Chem. Eng., 25, 96-102 (2014). https://doi.org/10.14478/ace.2013.1122
  22. J. J. Lee, Isotherms, kinetics and thermodynamic parameters studies of New Fuchsin dye adsorption on Granular activated carbon, Appl. Chem. Eng., 25, 632-638 (2014). https://doi.org/10.14478/ace.2014.1120
  23. H. Nollet, M. Roels, P. Lutgen, P. V. Meeren, and W. Verstraete, Removal of PCBs from wastewater using fly ash, Chemosphere, 53, 655-665 (2003). https://doi.org/10.1016/S0045-6535(03)00517-4
  24. J. J. Lee, Study on isotherm, kinetic and thermodynamic parameters for adsorption of methyl green using activated carbon, Appl. Chem. Eng., 30, 190-197 (2019). https://doi.org/10.14478/ACE.2019.1001
  25. J. J. Lee, Characteristics of isotherm, kinetic, and thermodynamic parameters for reactive blue 4 dye adsorption by activated carbon, Clean Technol., 26, 122-130 (2020). https://doi.org/10.7464/KSCT.2020.26.2.122
  26. C. K. Na, M. Han, and H. J. Park, Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents, J. Korean Soc. Environ. Eng., 33, 606-616 (2011). https://doi.org/10.4491/KSEE.2011.33.8.606