DOI QR코드

DOI QR Code

Degradation of the Chlorothalonil by Functional Zeolite-KCIO3 Complex

기능성 Zeolite-KCIO3 복합체에 의한 Chlorothalonil의 분해

  • Choi, Choong-Lyeal (Institute of Agricultural Science & Technology, Kyungpook National University) ;
  • Park, Man (School of Chemistry and Molecular Engineering, Seoul National University) ;
  • Lee, Dong-Hoon (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Lee, Byung-Mook (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Rhee, In-Koo (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Choi, Jyung (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Kim, Jang-Eok (Department of Agricultural Chemistry, Kyungpook National University)
  • 최충렬 (경북대학교 농업과학기술연구소) ;
  • 박만 (서울대학교 화학부) ;
  • 이동훈 (경북대학교 농화학과) ;
  • 이병묵 (경북대학교 농화학과) ;
  • 이인구 (경북대학교 농화학과) ;
  • 최정 (경북대학교 농화학과) ;
  • 김장억 (경북대학교 농화학과)
  • Published : 2004.06.30

Abstract

Salt occlusion in Zeolite is a unique phenomenon that takes place only when the salt size is similar to the window size of host zeolite. $KCIO_3$-occluded Zeolite, as an environment-friendly oxidant, has a high potential for effective removal of various organic pollutants. This study was carried to investigate the characteristics and the removal kinetics of fungicide chlorothalonil by zeolite-$KCIO_3$ complex. About 10% of $KCIO_3$ was occluded in zeolite pores synthesized by salt-thermal method from fly ash, although the occlusion amount was relatively less compared to that of nitrate salts. By occlusion with $KCIO_3$, no remarkable changes were found in X-ray diffraction patterns of cancrinite, whereas some decrease of overall peak intensities was found with those of sodalite. Different releasing kinetics of $CIO_3^-$ ion were observed in distilled water and soil solution from zeolite-$KCIO_3$ complex. Two reactions, hydration and diffusion, seem to be related with the release of $KCIO_3$. Therefore, the release isotherm of $CIO_3^-$ ion well fitted to the power function model which indicate the release was made by hydration and diffusion. The removal of chlorothalonil by zeolite and $KCIO_3$ reached at reaction equilibrium within 6 hours by 18% and 47% respectively. However, the chlorothalonil removal by the zeolite-$KCIO_3$ complex increased slowly and steadily up to 92% in 96 hours. These findings suggested that zeolite-$KCIO_3$ complex could be applied for effective removal of organic contaminants in the soil and aqueous environment.

Keywords

References

  1. Bollag, J. M, Myers, C J. and Minard, R D. (1992) Biological and chemical interactions of pesdddes with soil organic matter, Sci. Totat Environ. 124, 205-217 https://doi.org/10.1016/0048-9697(92)90146-J
  2. Oleg, V. N. and Pahsa, A. A. (2002) Degradation of dicarboxylic acids $C_{2}C_{9}$) upon liquid-phase reactions with $O_3$ and its atmospheric implications, Environ. Sci. Technol 36, 3265-3269 https://doi.org/10.1021/es0114310
  3. Ormad, P, Cortes, S., Puig, A. and Ovelleiro, J. L. (1997) Degradation of organochloride compounds by $O_3$ and Q/HzQz, Wat. Res. 31, 2387-2391 https://doi.org/10.1016/S0043-1354(97)00066-3
  4. Rark, J. W, Lee, S. E, Rhee, I. K and Kim, J. E. (2002) Transformation of the fungicide chlorothalonil by Fenton reagent, J. Agric. Food Chem. 50, 7570-7575 https://doi.org/10.1021/jf025772o
  5. Berry, D. F, Tomkinson, R A., Hetzel, G. H., Mullins, D. E. and Young, R W. (1993) Evaluation solid state fermentation techniques to dispose of atrazine and carbofuran, /, Environ. Qual. 22, 366-375
  6. Mullines, D. E.,Young, R W., Palmer, C. R, Hamaton, R L and Sherertz, P. C. (1989) Disposal of concentration solutions of diazinon using organic absorption and chemical and microbial degradation, Pest. Sci. 25, 241-254 https://doi.org/10.1002/ps.2780250305
  7. Meijers, R T., Oderwaldmuller, E. J., Nuhn, P. A. N. M.and Kruithof, J. C. (1995) Degradation of pestiddes byozonation and advanced oxidation, Ozone Sci. Eng. 17, 673-686 https://doi.org/10.1080/01919512.1995.10555778
  8. Arapoglou, D., Vlyssides, A., Israilides, C, Zorpas, A.and Karlis, P. (2003) Detoxification of methyl-parathion pesticide in aqueous solutions by electrochemical oxidation, J. Haz. Mat. 98, 191-199 https://doi.org/10.1016/S0304-3894(02)00318-7
  9. Sakkas, V. A and Albanis, T. A (2003) Photocatalyzed degradation of the biocides chlorothalonil and dichlofluanid over aqueous TiCU suspensions, Appl. Catcd. B. 46, 175-188 https://doi.org/10.1016/S0926-3373(03)00198-X
  10. Malato, S., Blanco, ]., Maldonado, M. I. Fernandez Ib$\'{a}\~{n}$ez, P. and Campos, A. (2000) Optiirdsing solar photocatalytic mineralisation of pestiddes by adding inorganic oxidising spedes; application to the recycling of pesHdde containers, AppL Catd. B, 28, 163-174 https://doi.org/10.1016/S0926-3373(00)00175-2
  11. Motonaga, K., Tagagi K. and Matumoto, S. (1996) Biodegradation of chlorothalonil in soil after suppression of degradation, Biol. Fertil. Soils, 23, 340-345 https://doi.org/10.1007/BF00335964
  12. Sigler W. V. and Turco, R F. (2002) The impact of chlorofhalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis, Appl. Soil Ecotogy 21, 107-118 https://doi.org/10.1016/S0929-1393(02)00088-4
  13. Motonaga, K., Takagi, K. and Matumoto, S. (1998) Suppression of chlorothalonil degradation in soil after repeated application, Biol. Fert. Soils 23, 340-345 https://doi.org/10.1007/BF00335964
  14. Park, M, Choi, C. L, Kim, J. S., Lee, D. H., Kim, K. S. Heo, N. H. and Choi, J. (2003) Occlusion potential of zeolites for mixed and non-nitrate salts, Micropor. and Mesopor. Mater. 62, 1-7 https://doi.org/10.1016/S1387-1811(03)00333-0
  15. Park, M and Komarneri, S. (1997) Occlusion of $KN0_3$, and $NH_{4}N0_3$ in natural zeolite, Zeotites 18, 171-175
  16. Park, M, Shin, S. S., Choi, C. L, Lee, D. H., Lim, W. T., Komarneri, S., Kim, M. C, Choi, J. and Heo, N. H. (2001) Rule of framework on $NH_{4}N0_3$ occlusion in zeolite pores, Micropor. and Mesopor. Mater. 50, 91-99 https://doi.org/10.1016/S1387-1811(01)00439-5
  17. Park, M., Choi, C. L, Lim, W. T., Kim, M. C, Choi, J. and Heo, N. H. (2000) Molten-salt method for the synthesis of zeolitic materials, I. Zeolite formation in alkaline molten-salt system, Micropor. and Mesopor. Mater. 37,81-89 https://doi.org/10.1016/S1387-1811(99)00196-1
  18. Choi, C. L, Park, M, Lee, D. H., Kim, J. E, Park, B. Y. and Choi, J. (2001) Salt-thermal zeolitization of fly ash, Environ. Sci. Technol. 35, 2812-2816 https://doi.org/10.1021/es0017817
  19. Park, M, Choi, C. L, Um, W. T., Kim, M. C, Choi, J. and Heo, N. H. (2000) Molten-salt method for the synthesis of zeolitic materials, II. Characterization of zeolitic materials, Micropor. cmd Mesopor. Mater. 37, 91-98 https://doi.org/10.1016/S1387-1811(99)00195-X
  20. Kim, J. S. (2002) Development of multifunctional zeolite fertilizer by exploitation of the zeolite micropore, Ph.D. Thesis, Kyungpook University
  21. Halvin, J. L. and Westfall, D. G. (1985) Potassium release kinetics and plant response in calcareous soils, SoiI Sci. Soc. Am. J. 49, 366-370 https://doi.org/10.2136/sssaj1985.03615995004900020019x
  22. Park, M. and Komameri, S. (1998) $NH_{4}N0_3$ occlusion vs $NH_{4}^+$ exchange in natural zeolites, Soil Sci. Soc. Am. J. 62, 1455-1459 https://doi.org/10.2136/sssaj1998.03615995006200050044x
  23. Greenwood, N. N. and Earmshaw, A. (1984) Chemistry of the Elements, Pergamon Press, New York, USA, p.999-1020
  24. Kim, J. H., Nam, C. D. and Kim, B. K. (1996) Photocatalytic degradation of chlorothalonil using $TiO_2$ supported in matrices, J. Korean Ind. & Eng. Chemistry 7, 750-756
  25. Greenwood, N. N. and Eamshaw, A (1984) Chemistry of the elements, Pergamon Press, New York, USA, p.999-1018
  26. Nelson, M. D./ Parker, B. L./ Al, T. A., Cherry, J. A. and Loomer, D. (2001) Geochemical reactions resulting from in situ oxidation of PCE-DNAPL by $KMnO_4$ in a sandy aquifer, Environ. Sci. Technol. 35, 1266-1275 https://doi.org/10.1021/es001207v