• Title/Summary/Keyword: Approach delay

Search Result 812, Processing Time 0.035 seconds

Discrete-Time Output Feedback Control of Nonlinear Systems with Unknown Time-Delay : Fuzzy Logic Approach (미지의 시간지연을 갖는 비선형 시스템의 이산시간 퍼지 출력 궤환 제어)

  • 신현석;김은태;박민용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.374-378
    • /
    • 2003
  • A new discrete-time fuzzy output feedback control method for nonlinear systems with unknown time-delay is proposed. Ma et al. proposed an analysis and design method of fuzzy controller and observer and Cao et al. extend this result to be applicable fir the nonlinear systems with known time-delay. For the case of unknown time-delay, we derive the sufficient condition f3r the asymptotic stability of the equilibrium Point by applying Lyapunov-Krasovskii theorem and convert this condition into the LMI problem.

A Study on the Level of Service Criteria of Intersection by TRANSYT-7F Vehicle Delay Model (TRANSYT-7F Delay Model에 의한 교차로 서비스수준 분석 기준에 관한 연구)

  • 서채연;김재국;이상국;문권수
    • Journal of Korean Society of Transportation
    • /
    • v.8 no.2
    • /
    • pp.43-54
    • /
    • 1990
  • Six Levels of Service are defined for each type of facility for which analysis procedures as available. They are given letter designations, from A to F with Level of Service A representing the best operating conditions and Level of Service F the worst. Yet the appropriate criteria by vehicle delay model in our situations are not formed. Therefore, The objective of this study is to form the criterion of by average approach delay based on the criterion of V/C ratio. Level-of-Service criterion of this study by TRANSYT-7F Delay Model is as follows. A:${\leq}35.5$ sec, B:${\leq}41$ sec, C:${\leq}48$ sec, D:${\leq}56.5$ sec, E:${\leq}66.5$ sec, F:>66.5 sec.

  • PDF

Stabilizing Controller Design for Time-delay Singularly Perturbed Systems by H Norm and Lambert W Function (시간지연을 갖는 특이 섭동 시스템에서 H놈과 램버트 W 함수를 이용한 안정화 제어기 설계)

  • Kim, Beomsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1144-1150
    • /
    • 2013
  • The stabilizing controller design problem of time-delay singularly perturbed systems is considered. The proposed approach is based on the $H_{\infty}$ norm and the composite control method. A sufficient condition for the stability of the time-delay slow subsystem is presented. Using this condition, we can construct the composite control law for the time-delay singularly perturbed system and analysis the system by the matrix Lambert W function. Illustrated examples are presented to demonstrate the validity and applicability of the proposed method.

Design of A Robust Adaptive Controller for A Class of Uncertain Non-linear Systesms with Time-delay Input

  • Nguyen, Thi-Hong-Thanh;Cu, Xuan-Thinh;Nguyen, Thi-Minh-Huong;Ha, Thi-Hoan;Nguyen, Dac-Hai;Tran, Van-Truong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1955-1959
    • /
    • 2005
  • This paper presents a systematic analysis and a simple design of a robust adaptive control law for a class of non linear systems with modeling errors and a time-delay input. The theory for designing a robust adaptive control law based on input- output feedback linearization of non linear systems with uncertainties and a time-delay in the manipulated input by the approach of parameterized state feedback control is presented. The main advantage of this method is that the parameterized state feedback control law can effectively suppress the effect of the most parts of nonlinearities, including system uncertainties and time-delay input in the pp-coupling perturbation form and the relative order of non linear systems is not limited.

  • PDF

Robust control of input time delay systems by observer design (관측기 설계에 의한 시간지연 시스템의 강인한 제어)

  • 김정원;이장명
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.239-242
    • /
    • 1998
  • Most of time delay existing in industrial processes can be modeled as an input time-delay which causes a lot of difficulties. To implement a time-delay free control, loop transfer function is recovered through the direct state feedback. For the proper state feedback, and observer is designed based upon the factorization approach which is known as one of the most powerful tool for the design of various control systems. The design scheme is parctically applied for the control of a DC motro which suffers from input time-delay. Simulational results demonstrate that this new algorithm guarantess the stability of the time-delayed system, as well as performance improvement compared to the conventional PI control.

  • PDF

A Node Scheduling Algorithm in Duty-Cycled Wireless Sensor Networks

  • Thi, Nga Dao;Dasgupta, Rumpa;Yoon, Seokhoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.593-594
    • /
    • 2015
  • In wireless sensor networks (WSNs), due to the very low data rate, the sleeping schedule is usually used to save consumed energy and prolong the lifetime of nodes. However, duty-cycled approach can cause a high end-to-end (E2E) delay. In this paper, we study a node scheduling algorithm in WSNs such that E2E delay meets bounded delay with a given probability. We have applied the probability theory to spot the relationship between E2E delay and node interval. Simulation result illustrates that we can create the network to achieve given delay with prior probability and high energy use efficient as well.

  • PDF

SOLVING SECOND ORDER SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS WITH LAYER BEHAVIOR VIA INITIAL VALUE METHOD

  • GEBEYAW, WONDWOSEN;ANDARGIE, AWOKE;ADAMU, GETACHEW
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.331-348
    • /
    • 2018
  • In this paper, an initial value method for solving a class of singularly perturbed delay differential equations with layer behavior is proposed. In this approach, first the given problem is modified in to an equivalent singularly perturbed problem by approximating the term containing the delay using Taylor series expansion. Then from the modified problem, two explicit Initial Value Problems which are independent of the perturbation parameter, ${\varepsilon}$, are produced: the reduced problem and boundary layer correction problem. Finally, these problems are solved analytically and combined to give an approximate asymptotic solution to the original problem. To demonstrate the efficiency and applicability of the proposed method three linear and one nonlinear test problems are considered. The effect of the delay on the layer behavior of the solution is also examined. It is observed that for very small ${\varepsilon}$ the present method approximates the exact solution very well.

Improved Paired Cluster-Based Routing Protocol in Vehicular Ad-Hoc Networks

  • Kim, Wu Woan
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.22-32
    • /
    • 2018
  • In VANET, frequent movement of nodes causes dynamic changes of the network topology. Therefore the routing protocol, which is stable to effectively respond the changes of the network topology, is required. Moreover, the existing cluster-based routing protocol, that is the hybrid approach, has routing delay due to the frequent re-electing of the cluster header. In addition, the routing table of CBRP has only one hop distant neighbor nodes. PCBRP (Paired CBRP), proposed in this paper, ties two clusters in one pair of clusters to make longer radius. Then the pair of the cluster headers manages and operates corresponding member nodes. In the current CBRP, when the cluster header leaves the cluster the delay, due to the re-electing a header, should be occurred. However, in PCBRP, another cluster header of the paired cluster takes the role instead of the left cluster header. This means that this method reduces the routing delay. Concurrently, PCBRP reduces the delay when routing nodes in the paired cluster internally. Therefore PCBRP shows improved total delay of the network and improved performance due to the reduced routing overhead.

Design of Unknown Input Observer for Linear Time-delay Systems

  • Fu, Yan-Ming;Duan, Guang-Ren;Song, Shen-Min
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.530-535
    • /
    • 2004
  • This paper deals with the unknown input observer (UIO) design problem for a class of linear time-delay systems. A case in which the observer error can completely be decoupled from an unknown input is treated. Necessary and sufficient conditions for the existences of such observers are present. Based on Lyapunov stability theory, thedesign of the observer with internal delay is formulated in terms of linear matrix inequalities (LMI). The design of the observer without internal delay is turned into a stabilization problem in linear systems. Two design algorithms of UIO are proposed. The effect of the proposed approach is illustrated by two numerical examples.

COMPLETE CONTROLLABILITY OF SEMILINEAR STOCHASTIC INTEGRO-DIFFERENTIAL EQUATIONS WITH INFINITE DELAY AND POISSON JUMPS

  • D.N., CHALISHAJAR;A., ANGURAJ;K., RAVIKUMAR;K., MALAR
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.5_6
    • /
    • pp.299-315
    • /
    • 2022
  • This manuscript deals with the exact (complete) controllability of semilinear stochastic differential equations with infinite delay and Poisson jumps utilizing some basic and readily verified conditions. The results are obtained by using fixed-point approach and by using advance phase space definition for infinite delay part. We have used the axiomatic definition of the phase space in terms of stochastic process to consider the time delay of the system. An infinite delay along with the Poisson jump is the new investigation for the given stochastic system. An example is given to illustrate the effectiveness of the results.