• Title/Summary/Keyword: Antifungal potential

Search Result 254, Processing Time 0.04 seconds

Paeonia lactiflora Inhibits Cell Wall Synthesis and Triggers Membrane Depolarization in Candida albicans

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.395-404
    • /
    • 2017
  • Fungal cell walls and cell membranes are the main targets of antifungals. In this study, we report on the antifungal activity of an ethanol extract from Paeonia lactiflora against Candida albicans, showing that the antifungal activity is associated with the synergistic actions of preventing cell wall synthesis, enabling membrane depolarization, and compromising permeability. First, it was shown that the ethanol extract from P. lactiflora was involved in damaging the integrity of cell walls in C. albicans. In isotonic media, cell bursts of C. albicans by the P. lactiflora ethanol extract could be restored, and the minimum inhibitory concentration (MIC) of the P. lactiflora ethanol extract against C. albicans cells increased 4-fold. In addition, synthesis of $(1,3)-{\beta}-{\small{D}}-glucan$ polymer was inhibited by 87% and 83% following treatment of C. albicans microsomes with the P. lactiflora ethanol extract at their $1{\times}MIC$ and $2{\times}MIC$, respectively. Second, the ethanol extract from P. lactiflora influenced the function of C. albicans cell membranes. C. albicans cells treated with the P. lactiflora ethanol extract formed red aggregates by staining with a membrane-impermeable dye, propidium iodide. Membrane depolarization manifested as increased fluorescence intensity by staining P. lactiflora-treated C. albicans cells with a membrane-potential marker, $DiBAC_4(3)$ ((bis-1,3-dibutylbarbituric acid) trimethine oxonol). Membrane permeability was assessed by crystal violet assay, and C. albicans cells treated with the P. lactiflora ethanol extract exhibited significant uptake of crystal violet in a concentration-dependent manner. The findings suggest that P. lactiflora ethanol extract is a viable and effective candidate for the development of new antifungal agents to treat Candida-associated diseases.

Toxicity and Characteristics of Antifungal Substances Produced by Bacillus amyloliquefaciens IUB158-03 (Bacillus amyloliquefaciens IUB158-03이 생산하는 항진균물질의 생화학적 특성 및 독성)

  • Kim, Hye-Young;Lee, Tae-Soo
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1672-1678
    • /
    • 2009
  • The purified antifungal substances produced by Bacillus amyloliquefaciens IUB158-03 was positive to ninhydrin but negative to aniline, suggesting that the antifungal substance could be a peptide. FAB-MS, UV adsorption spectrum, and amino acid composition analysis revealed that the molecular weight of the antifungal substance was 1042 and that maximal adsorption was at 220 nm and 277 nm. The antifungal substance was composed of $Asn_3$, $Gln_2$, $Ser_1$, $Gly_1$, and $Tyr_1$. The composition and structural characteristics of antifungal substance were analysed by $^1H$-NMR spectrum, $^1H$-COSY, HMQC, which revealed that the compound belongs to the iturin A family. Temperature and pH had little effect on the stability of the antifungal substance in the ranges of $-70{\sim}121^{\circ}C$ and pH 6.0~10.0, respectively. It showed strong antibiotic activity against fungi. An in vitro cytotoxicity test using NIH3T3 cell showed that the antifungal substance does not have cytotoxicity. The number of circulating leukocytes and the hematobiological analysis of the mice administered with the antifungal substances was similar to those of the control group, indicating no cytotoxicity in vivo. Therefore, the antifungal substances extracted from culture broth of Bacillus amyloliquefaciens IUB158-03 have future potential as biocontrol agents against plant diseases caused by fungi.

Antifungal and Plant Growth Promotion Activities of Recombinant Defensin Proteins from the Seed of Korean Radish (Raphanus sativus L.)

  • Hwang, Cher-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.435-441
    • /
    • 2009
  • In the present study, we analyzed the defensin protein deduced from Korean radish (Raphanus sativus L.) seeds.To express the genes in E. coli, we constructed a recombinant expression vector with a defensin gene, named rKRs-AFP gene isolated from Korean radish seeds. Over expressed rKRs-AFP proteins was separated by SDS-PAGE to determine the purity, and protein concentration was determined by the Bradford method. Antifungal activity was assessed by disk assay method against the tested fungi. As a result, when 500 mL of cell culture were disrupted by sonicator, 32.5 mg total proteins were obtained. The purified protein showed a single band on SDS-PAGE with estimated molecular weight about 6 KDa, consistent with the molecular mass calculated from the deduced amino acid sequence. The purified rKRs-AFP protein showed remarkable antifungal activities against several fungi including Aspergillus niger, Botrytis cinerea causing the gray mold disease, and Candida albicans. In field tests using the purified rKRs-AFP protein, the protein showed the reducing activity of disease spot and the mitigating effect of spreading of disease like agrichemicals. The immuno-assay of rKRs-AFP protein showed that the purified protein entirely accumulated at B. cinerea cytoplasm through the hyphal septa shown by fluorescence imaging. There was no fluorescence inside the cell, when the hypha was incubated without the protein. These all results indicate that the recombinant rKRs-AFP proteins can be utilized as a potential antifungal drug to control harmful plant fungal pathogens.

Selection of KYC 3270, a Cellulolytic Myxobacteria of Sorangium cellulosum, against Several Phytopathogens and a Potential Biocontrol Agent against Gray Mold in Stored Fruit

  • Kim, Sung-Taek;Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.257-265
    • /
    • 2011
  • During 2002-2008 in Korea, 455 extracts from myxobacteria consisting of 318 cellulolytic and 137 bacteriolytic myxobacteria were isolated, which were then screened for antifungal activity against the phytopathogens Botrytis cinerea, Colletotrichum acutatum, Penicillium sp., Pyricularia grisea, and Phytophthora capsici. 204 isolates had antifungal activity, causing both a clear zone due to blocked spore germination and inhibition of mycelial growth; most (199) were from cellulolytic (Sorangium cellulosum) and only five were from bacteriolytic myxobacteria. B. cinerea, the best controlled among the five tested pathogens, had a unique group of antifungal isolates of myxobacterial extracts compared to the other pathogens' groups. Among seventy-nine bioactive myxobacteria, four isolates, KYC 3130, KYC 3247, KYC 3248 and KYC 3270, were selected and all were cellulolytic. Liquid culture filtrates of these four myxobacteria were applied to tomato, cherry tomato, strawberry, and kiwi fruits 5 h before inoculation with gray mold conidia; then the treated fruits were placed in an airtight container and the experiment was repeated six to eight times. Incidence (%) of gray mold on fruit of the infected control treatment was 84-98%, whereas it was only 5-21% after the KYC 3270 treatment. After KYC 3270 treatment of the four fruits, mold control was 79-95%, which was highest among the filtrates and statistically the same as treatment with fludioxonil, a registered chemical against gray mold of stored fruits.

Characteristics of Microbial Biosurfactant as an Antifungal Agent Against Plant Pathogenic Fungus

  • YOO DAL-SOO;LEE BAEK-SEOK;KIM EUN-KI
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1164-1169
    • /
    • 2005
  • Characteristics of sophorolipid and rhamnolipid were evaluated as antifungal agents against plant pathogenic fungi. Eight percent of mycelial growth of plant pathogen (Phytophthora sp. and Pythium sp.) was inhibited by 200 mg/l of rhamnolipid or 500 mg/l of sophorolipid, and zoospore motility of Phytophthora sp. decreased by $90\%$ at 50 mg/l of rhamnolipid and $80\%$ at 100 mg/l of sophorolipid. The effective concentrations for zoospore lysis were two times higher than those of zoospore motility inhibition. The highest zoospore lysis was observed with Phytophthora capsici; $80\%$ lysis at 100 mg/I of di-rhamnolipid or lactonic sophorolipid, showing the dependency of structure on the lysis. In the pot test, the damping-off disease incidence ratio decreased to $42\%\;and\;33\%$ of control value at 2,000 mg/l sophorolipid and rhamnolipid, respectively. These results showed the potential of microbial glycolipid biosurfactants as an effective antifungal agent against damping-off plant pathogens.

Antifungal Effect of Amentoflavone derived from Selaginella tamariscina

  • Jung, Hyun-Jun;Sung, Woo-Sang;Yeo, Soo-Hwan;Kim, Hyun-Soo;Lee, In-Seon;Woo, Eun-Rhan;Lee, Dong-Gun
    • Archives of Pharmacal Research
    • /
    • v.29 no.9
    • /
    • pp.746-751
    • /
    • 2006
  • Amentoflavone is a plant biflavonoid that was isolated from an ethyl acetate extract of the whole plant of Selaginella tamariscina (Beauv.) spring. 1D and 2D NMR spectroscopy including DEPT, HMQC, and HMBC were used to determine its structure. Amentoflavone exhibited potent antifungal activity against several pathogenic fungal strains but had a very low hemolytic effect on human erythrocytes. In particular, amentoflavone induced the accumulation of intracellular trehalose on C. albicans as a stress response to the drug, and disrupted the dimorphic transition that forms pseudo-hyphae during pathogenesis. In conclusion, amentoflavone has great potential to be a lead compound for the development of antifungal agents.

The Evaluation of Antifungal Activities and Safeties of 6-(4-Iodophenyl)amino-7-chloro-5,8-quinolinedione (6-(4-요오도페닐)아미노-7클로로-5,8-퀴놀린디온의 항진균작용 및 안전성 평가)

  • 유충규;윤여표;허문영;이병무;강혜영;이유진
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.1
    • /
    • pp.55-59
    • /
    • 1999
  • 6-(4-Iodophenyl)amino-7-chloro-5,8-quinolinedione (RCK9) was evaluated for antifungal activities. The MIC values of RCK9 were determined against A. flavus, c. albicans, C. neoformans and F. oxysporium. The RCK9 showed generally potent antifungal activities against the tested fungi. Acute oral toxicity studies of RCK9 were carried out in ICR mice of both sexes. These acute oral toxicities of RCK9 had been evaluated. RCK9 were low and LD50 values were over 2,850 mg/kg in ICR mice. The genotoxicities of RCK9 had been evaluated. RCK9 was negative in Ames test with Salmonella typhimurium and chromosomal aberration test in CHL cells. The clastogenicity was tested on the RCK9 with in vivo mouse micronucleus assay. RCK9 did not show any clastogenic effect in mouse peripheral blood and was negative in mouse micronucleus assay. The results indicate that RCK9 has no genotoxic potential under these experimental conditions.

  • PDF

Synthesis of Novel D-Glucose-derived Benzyl and Alkyl 1,2,3-Triazoles as Potential Antifungal and Antibacterial Agents

  • Wei, Jin-Jian;Jin, Lei;Wan, Kun;Zhou, Cheng-He
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.229-238
    • /
    • 2011
  • A series of novel glucose derived benzyl and alkyl 1,2,3-triazoles and their hydrochlorides have been synthesized via Cu(I)-catalyzed 1,3-dipolar cycloaddition. All the new compounds were characterized by MS, IR and NMR spectra. The DEPT, APT, $^1H$-$^1H$ and $^1H-^{13}C$ 2D NMR spectra for some compounds were also recorded. These compounds were evaluated for their in vitro antibacterial activities against Staphylococcus aureus ATCC 29213, Bacillus subtilis, Bacillus proteus, Pseudomonas aeruginosa, Escherichia coli ATCC 25922, and antifungal activities against Candida albicans and Aspergillus fumigatus. The bioactive data revealed that (3R,4S,5S,6S)-2-(hydroxymethyl)-6-methoxy-4,5-bis((1-octyl-1H-1,2,3-triazol-4-yl)methoxy)-tetrahydro-2H-pyran-3-ol 8a exhibited excellent antifungal activity against A. fumigatus with an MIC value of 0.055 mM compared to Fluconazole. It also showed broad inhibitory efficacy against tested bacterial strains with MIC values ranging from 0.049 mM to 0.39 mM.

Identification and Characterization of Paenibacillus polymyxa DY5 with Antifungal Activity against Crop Pathogenic Fungi (작물병원 진균에 대하여 항균 활성을 보이는 Paenibacillus polymyxa DY5의 동정 및 특성)

  • Kim, Hyo-Yoon;Weon, Hang-Yeon;Kim, Wan-Gyu;Yoo, Kwan-Hee
    • The Korean Journal of Mycology
    • /
    • v.37 no.2
    • /
    • pp.181-188
    • /
    • 2009
  • A Gram-positive, rod-shaped bacteria named DY5 was isolated from a peat sample collected from Daeam mountain in Korea. The culture filtrate of the bacterial isolate DY5 showed a broad spectrum of antifungal activity on various crop pathogenic fungi such as Trichoderma koningii, Fusarium oxysporum, Colletotrichum gloeosporioides, Sclerotinia sclerotiorum, Rhizoctonia solani AG-1(IA) For the identification of the DY5, morphological, biochemical, API 50 CHB test, analysis of fatty acid and molecular phylogenetic approaches were performed. The DY5 was found to be a member of the genus Paenibacillus on the basis of morphological and biochemical analysis. The 16S rRNA of DY5 showed high similarity(98%) with Paenibacillus polymyxa. On the basis of these results, the DY5 was identified as Paenibacillus polymyxa. Antifungal substance of the DY5 would be mild alkaline proteine molecule. The DY5 seems to have a great potential to be a biocontrol agent against various crop pathogens.

Opposite Effects of Vitamin C and Vitamin E on the Antifungal Activity of Honokiol

  • Sun, Lingmei;Ye, Xiaolong;Ding, Dafa;Kai, Liao
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.538-547
    • /
    • 2019
  • The aim of the present study was to evaluate the effects of two well-known natural antioxidants, vitamin C (VC) and vitamin E (VE), on the antifungal activity of honokiol against Candida albicans. The broth microdilution method was employed to test the antifungal activities of honokiol with or without antioxidants in the medium against C. albicans strain. Intracellular reactive oxygen species and lipid peroxidation were determined by fluorescence staining assay. Mitochondrial dysfunction was assessed by detecting the mitochondrial DNA and the mitochondrial membrane potential. We observed that VC could significantly potentiate the antifungal activities of honokiol while VE reduced the effectiveness of honokiol against C. albicans. In addition, VC accelerated honokiol-induced mitochondrial dysfunction and inhibited glycolysis leading to a decrease in cellular ATP. However, VE could protect against mitochondrial membrane lipid peroxidation and rescue mitochondrial function after honokiol treatment. Our research provides new insight into the understanding of the action mechanism of honokiol and VC combination against C. albicans.