DOI QR코드

DOI QR Code

Antifungal and Plant Growth Promotion Activities of Recombinant Defensin Proteins from the Seed of Korean Radish (Raphanus sativus L.)

  • Hwang, Cher-Won (Global Leadership School, Department of Environmental Bioscience, Handong Global University)
  • Published : 2009.12.30

Abstract

In the present study, we analyzed the defensin protein deduced from Korean radish (Raphanus sativus L.) seeds.To express the genes in E. coli, we constructed a recombinant expression vector with a defensin gene, named rKRs-AFP gene isolated from Korean radish seeds. Over expressed rKRs-AFP proteins was separated by SDS-PAGE to determine the purity, and protein concentration was determined by the Bradford method. Antifungal activity was assessed by disk assay method against the tested fungi. As a result, when 500 mL of cell culture were disrupted by sonicator, 32.5 mg total proteins were obtained. The purified protein showed a single band on SDS-PAGE with estimated molecular weight about 6 KDa, consistent with the molecular mass calculated from the deduced amino acid sequence. The purified rKRs-AFP protein showed remarkable antifungal activities against several fungi including Aspergillus niger, Botrytis cinerea causing the gray mold disease, and Candida albicans. In field tests using the purified rKRs-AFP protein, the protein showed the reducing activity of disease spot and the mitigating effect of spreading of disease like agrichemicals. The immuno-assay of rKRs-AFP protein showed that the purified protein entirely accumulated at B. cinerea cytoplasm through the hyphal septa shown by fluorescence imaging. There was no fluorescence inside the cell, when the hypha was incubated without the protein. These all results indicate that the recombinant rKRs-AFP proteins can be utilized as a potential antifungal drug to control harmful plant fungal pathogens.

Keywords

References

  1. Park, J. H., Shin, H. K., and Hwang, C. W. (2001) New Antimicrobial activity from Korean radish seeds (Raphanus sativus L.) J. Microbiol. Biotechnol., 11(2), 337-341
  2. Boman, H. G. (1995) Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13, 61-92 https://doi.org/10.1146/annurev.iy.13.040195.000425
  3. Seo, Y. W., K. W. Cho, H. S. Lee, T. M. Yoon, and J. H. Shin (2000) New polyene macrolide antibiotics from Streptomyces sp. M90025. J. Microbiol. Biotechnol 10, 176-180.
  4. Bae, D. W., J. T. Lee, D. Y. Son, E. S. Lee and H. K. Kim (2000) Isolation of bacteria strain antagonistic to Pyricularia oryzae and its made of antifungal action. J. Microbiol. Biotechnol. 10, 811-816
  5. Bae, D. W., Y. S. Kawk, J. T. Lee, D. Y. Son, S. S. Chun and H. K. Kim (2000) Purification and characterization of novel antifungal protein from Paenibacillus macerans PMI antagonistic to rice blast fungus Pyricularia oryzae. J. Microbiol. Biotechnol. 10, 805-810
  6. Hwang, C. W., I. C. Park, W. H. Yeh, M. Takagi and J. C. Ryu (1997) A partial of chitin synthase(CHS) gene from rice blast fungus Pyricularia oryzae and its cloning. J. Microbiol. Biotechnol. 7, 157-159
  7. Lacey, L. A. and M. Gottel (1995) Current development in microbial control of insect past and prospects for the 21st century. Entomophage. 40, 3-28 https://doi.org/10.1007/BF02372677
  8. Pfeifer, T. A. and T. A. Grigliatti (1996) Future perspectives on insect pest management: Engineering the pest. J. Invertebr. Pathol. 67, 109-119 https://doi.org/10.1006/jipa.1996.0017
  9. Seo, Y. W., K. W. Cho, H. S. Lee, T. M. Yoon and J. H. Shin (2000) New polyene macrolide antibiotics from Streptomyces sp. M90025. J. Microbiol. Biotechnol. 10, 176-180
  10. Flant, F., W. Vranken, W. Broekaert and F. Borremans (1998) Determination of the three- dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR. J. Mol. Biol. 279, 257-270 https://doi.org/10.1006/jmbi.1998.1767
  11. Terras, F. R. G.., H. M. E. Schoofs, M. F. C. De Bolle, F. Van Leuven, S. B. Rees, J. Vanderleyden, B. P. A. Cammue and W. F. Broekaert (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus) seeds. J. Biol. Chem. 267, 15301-15309
  12. Bohlmann, H., S. Clausen, S. Behnken, H. Giese, H. Hiller, U. Reimann-Philipp, G. Schrader, V. Barkholt and K. Apel (1988) Leaf-specific thionins of barley-a novel class of cell wall proteins toxic to plant pathogenic fungi and possibly involved in the defence mechanism of plants. EMBO J. 7, 1559-1565
  13. Broekaert , W. F., W. Marien, F. R. G. Terras, M. F. C. De Bolle, P. Proost, J. Van Damme, L, Dillen, M. Claeys, S. B. Rees, J. Vanderleyden and B. P. A. Cammue (1992) Antimicrobial peptides from Amaranthus cauatus seeds with sequence homology to the cysteine/ glycine-rich domain of chitin–binding proteins. Biochemistry 31, 4308-4314 https://doi.org/10.1021/bi00132a023
  14. Cammue, B. P. A., M. F. C. De Bolle, F. R. G. Terras, P. Proost, J. Van Damme, S. B. Rees, J. Vanderleyden, and W. F. Broekaert (1992) Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J. Biol. Chem. 267, 2228-2233
  15. Thevissen, K., Warnecke, D. C., Francois, I. E. J. A., Leipelt, M., Heinz ,E., Ott, C., U., Zahringer, B., Thomma, P. H. J., Ferket, K. K. A. and Cammue, B. P. A. (2004) Defensin from insects and plants interact fungal glucosylceramides, J. Biol. Chem., 279(6), 3900-3905 https://doi.org/10.1074/jbc.M311165200
  16. Hoffmann, J. A. and Hétru, C. (1992) Insect defensins: inducible antibacterial peptides. Immuno. Today. 13, 411-415 https://doi.org/10.1016/0167-5699(92)90092-L
  17. Broekaert, W. F., Terras, F. R. G., Cammue, B. P. A., and Osborn, R. W. (1995) Synergistic Enhancement of the Antifungal Activity of Wheat and Barley Thionins by Radish and Oilseed Rape 2S Albumins and by Barley Trypsin Inhibitors., Plant Physiol, (Bethestda) 108,1353-1358 https://doi.org/10.1104/pp.108.4.1353
  18. Bontem F., Roumestand C., Boyot P., Gilquin B., Doljansky Y., Menez A., Toma F. (1991) Threedimensional structure of natural charybdotoxin in aqueous solution by 1H-NMR. Charybdotoxin possesses a structural motif found in other scopion toxinz. Eur. J. Biochem., 196, 19-28 https://doi.org/10.1111/j.1432-1033.1991.tb15780.x
  19. Fontecilla-Champs J-C (1989) Three-demensional model of insect-directed scorpion toxin from Androctonus australis Hecter and its implication for the evolution of scorpion toxin in general. J. Mol. Evol. 29, 63-67 https://doi.org/10.1007/BF02106182
  20. Kobayashi Y, Takashima H, Tamaoki H, Kyogoku Y, Lambert P, Kuroda H, Chino N, Watanabe TX, Kimura T, Sakakibara S (1991) The cysteine-stabilized alpha-helix : a common structural motif of ionchanner blocking neurotoxic peptide. Biopolymers, 31, 1213-1220 https://doi.org/10.1002/bip.360311009
  21. Thomma, B. P. H. J., B. P. Cammue, K, Thevissen (2002) Plant defensins., Planta. 216(2), 193-202 https://doi.org/10.1007/s00425-002-0902-6
  22. Terras F. R., Eggermont K., Kovaleva V., Raikhel N. V., Osborn R. W., Kester A., Rees S. B., Torrekens S., Van Leuven F., Vanderleyden J. (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell. 7, 573 –588 https://doi.org/10.1105/tpc.7.5.573
  23. Segura A., Moreno M., Molina A., Garcia-Olmedo F. (1998) Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Lett., 435, 159–16. https://doi.org/10.1016/S0014-5793(98)01060-6
  24. De Samblanx G. W., Goderis I. J., Thevissen K., Raemaekers R., Fant F., Borremans F., Acland D. P., Osborn R. W., Patel S., Broekaert W. F. (1997)Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity. J. Biol. Chem., 272, 1171–1179 https://doi.org/10.1074/jbc.272.2.1171
  25. Thevissen K., Ghazi A., De Samblanx G. W., Brownlee C., Osborn R. W., Broekaert W. F. (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol. Chem., 271, 15018– 1502 https://doi.org/10.1074/jbc.271.25.15018
  26. Terras, F. R. G., H. M. E. Schoofs, K. Thevissen, R. W. Osborn, J. Vanderleyden, B. P. A. Cammue, and W. F. Broekaert (1993) A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Lett. 316, 233-24 https://doi.org/10.1016/0014-5793(93)81299-F
  27. Hwang, C. W. (2007) Study of distance relationships among domestic radish (Raphanus sativus L.) by analyzing its anti-fungal protein gene. J. Life Science. 17, 1294-1297 https://doi.org/10.5352/JLS.2007.17.9.1294
  28. A. K. Patra, R. Mukhopadhyay, R. Mukhija, A. Krishnan, L. C. Grag and A. K. Panda, (2000) Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli. Protein Expr. Purif., 18, pp. 182–192 https://doi.org/10.1006/prep.1999.1179
  29. M. M. Bradford (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein–dye binding. Anal. Biochem.72, pp. 248–254 https://doi.org/10.1016/0003-2697(76)90527-3
  30. Hwang, C. W. (2003) Antifungal activity of Korean radish (Raphanus sativus L) extracts against pathogenic plant. J. Life Science. 13, 223-229 https://doi.org/10.5352/JLS.2003.13.2.223